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Abstract

Non-Transparent Debugging of Optimized Code

by

Caroline Mae Tice

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Susan L. Graham, Chair

Debugging optimized code is a problem for which a widely accepted solution has

yet to be found. Over the years many approaches have been suggested, including limiting

the compiler optimizations, restricting the debugger functionality, using recompilation or

dynamic de-optimization to undo the optimizations, and having the debugger determine

the effects of optimizations and mask them from the user. All of these approaches have

a common thread: they place a barrier between the user and the optimizations, either

altering, undoing, or hiding the effects of optimizations.

This work presents a completely different approach. By allowing users to see

some of the effects of optimizations, many of the problems traditionally associated with

debugging optimized code are either simplified or eliminated. The basic idea is to generate

an optimized version of the source program, which accurately reflects the effects of the

compiler optimizations. The user and the debugger then communicate via this optimized

source program.

The theoretical issues involved in generating optimized source code, as well as the

compiler support necessary for debugging optimized code are presented in this work. It

also explores options for displaying the optimized source program to the user in the most

useful, least confusing manner. It introduces the concept of key instructions and shows how

they are critical for simplifying determining current variable locations within the executable,

and mapping accurately between binary instructions and statements in the optimized source

program. It also presents a pioneering approach for eviction recovery within the debugger.

These ideas have been fully implemented in Optview and Optdbx, which are de-



2

scribed in this dissertation. Optview is a prototype tool that generates optimized source

code for C programs. It is embedded within the SGI MIPS-Pro 7.2 C compiler. Optdbx is

a modified version of the SGI dbx debugger, which makes use of the optimized source code.

It contains the only known implementation of eviction recovery, and it has a simple graphi-

cal user interface for displaying the optimized source program to the user. Experiments on

these systems have proven that this approach provides a simple, practical, complete solution

to the difficult problem of debugging optimized code.
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Chapter 1

Introduction

The number and complexity of optimizations performed by today’s compilers has

far outstripped the technology for debugging the resulting programs. Over the past twenty

years optimization technology has progressed by leaps and bounds. However over the same

twenty years, there has been very little progress made in our ability to debug programs to

which these optimizations have been applied. This lack of progress is due in a large part

to two common misconceptions: that there is no real need to debug optimized code, and

that debugging optimized code is too difficult a problem to solve. In this chapter we point

out the fallacies of the first misconception, and introduce basic compilation and debugging

paradigms. We also discuss the effects optimization has on debugging and some of the

problems in presents. In later chapters we disprove the second misconception by describing

the design and implementation of a solution to the problem of debugging optimized code.

1.1 Quick Overview of Compilers and Optimizations

Computers work by reading and executing sets of instructions, called programs.

The programs that the computers directly read and execute must be written in the native

language for the particular machine on which the program is executing. This language,

referred to as the machine language, usually consists of ones and zeros. Therefore the

programs written in such a language are often referred to as binary programs, or binaries.

When the first modern computers were built, back in the 1940’s, people wrote their

“programs” directly in machine language, usually by flipping switches on the front of the

computer. As programming needs became more complex, programming directly in machine
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language quickly became impractical, and assembly language was developed. Assembly

language is a low-level language that uses symbolic representations of the operations and the

data locations contained in the instructions. Usually there is a one-to-one correspondence

between assembly instructions and machine instructions. Along with assembly language

came the assembler which translates assembly language programs into machine language

programs. Writing large, complex programs in assembly language was still an arduous task,

so in the mid-50’s the first widely used high-level programming language, FORTRAN, was

developed, along with a compiler to translate programs written in FORTRAN to assembly

language or machine language. The FORTRAN compiler was an optimizing compiler. The

developers of FORTRAN feared that unless the compiler produced assembly or machine

programs nearly as efficient as those coded by hand, then no one would use FORTRAN.[6]

Optimizing compilers perform “optimizing” transformations on the program while

translating it from the language in which it was written (the source language) to assembly or

machine language (the target language). An optimizing transformation, or optimization, is a

transformation that preserves the semantics and correctness of the code, and reduces either

the amount of space the computation requires, or the amount of time it takes to run, or

both. The term “optimization” is a misnomer, as the resulting program is rarely optimal.

However optimized programs usually run faster and require less space than unoptimized

programs.

Since their first introduction, optimizations have become steadily more common

and more complex. Today most compilers come with at least some optimizations, and in

some cases the optimizations have become such an integral part of the compiler that they

cannot be turned off.

One of the reasons for the increased use of optimizations in compilers is the corre-

sponding growth in the size and complexity of computer programs. As computer programs

become more and more complicated and computer systems require more and more pro-

grammers to complete a single piece of software, the importance of writing code that is

easy to read and easy to maintain increases as well. It is a well known fact, that through-

out the entire life of a successful computer program, roughly 67% of the programmer time

and effort will be spent in maintaining the program (debugging and modifying it).[25, 45]

Furthermore it is quite common for the maintainers of the program to be different from

its authors. Consequently when writing computer programs, a good programmer has three

major goals in mind: Correctness of the program; readability of the program; and, ease
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of maintaining or modifying the program. The last two goals are especially important in

light of the current tendencies towards ever larger and more complex computer programs.

Unfortunately readability and ease of maintenance tend to be in direct conflict with the

efficiency of the resulting code. Often the programs that are easy to read and maintain are

seemingly inefficient in their use of the computer resources.

Enter the optimizing compiler. Because of the optimizations performed by these

compilers, programmers are able to write programs that are relatively easy to read and

maintain, and yet make reasonably efficient use of the computer resources. Thus we are

allowed to “have our cake and eat it too”.

1.2 General Overview of Debuggers

There is a price to pay, however, for having our cake and eating it too. The price

is in the area of debugging. As Zellweger stated, “The basic presuppositions of optimization

and source-level debugging conflict.”[47, p. 3]. A good place to begin examining this prob-

lem is with a general overview of debuggers and how they fit into the software development

process.

When creating a computer program, a software engineer usually starts with a

description of the problem to be solved and possibly an algorithm with which to solve it.

The engineer then sits down and creates a design of the program. Next she translates the

program design into a high-level programming language, and writes the program. After

writing the program, the engineer compiles it, often without any optimizations. Since

most compilers, in addition to translating the source program, perform basic syntactic and

semantic checks on the program, the engineer can be fairly certain that the program, once

compiled, does not contain any of these basic errors.

However the program could easily contain logic errors, either because the algorithm

the engineer selected for solving the problem is not a correct algorithm for the given problem,

or because the engineer did not properly translate the algorithm into the programming

language. Most errors of this kind can be detected only by running the program on a

variety of inputs, and either examining the outputs to see if they are correct, or noting

that the program “crashed” during execution (i.e. it halted execution early, with an error

message, rather than terminating normally).

Once an error has been detected, the engineer needs to determine what portion of



4

the source program caused the error. There are several alternative approaches the engineer

can take:

• Visually examine the code in an attempt to spot the error.

• Simulate execution of the program by hand.

• Insert print statements into the program, to print out intermediate values during the

computation. Recompile and rerun the program. Look at the intermediate values in

an attempt to pinpoint where the error is occurring.

• Run the program in an interactive debugger to monitor the program as it executes.

The last choice is usually the easiest and least time-consuming option for the pro-

grammer. A debugger is a special tool that allows programmers to monitor other programs

while they are executing. An interactive debugger is one that allows the user to enter

commands and requests, controlling the execution of the target program being monitored.

A source-level debugger is one that allows the user to enter the requests and commands

in terms of the original source program, from which the target program was generated. A

source-level debugger returns responses in terms of the source program as well.

Source-level debugging is very useful because the error exists in, and must be

corrected in, the original source program. Therefore being able to relate the program

execution directly to the original source program is a big help. Furthermore the programmer

may have an imperfect understanding of the target language. In the remainder of this

dissertation the term “debugger” always refers to an interactive source-level debugger.

In order to be useful, an interactive debugger must have at least three core pieces

of functionality. First it should allow the user to manipulate the execution of the target

program. In particular the user should be able to suspend and resume execution of the

target program at any point during the computation upon request. Second, the debugger

must be able to convey the control state of the suspended program to the user. The user

must be able to determine, upon suspension of execution, which parts of the program have

executed, and which parts have not. Finally the debugger needs to convey the data state

of the target program to the user. The debugger needs to be able to report to the user the

value of any program variable within scope at the point where execution was suspended. It

also should display, on request, the current call stack, giving the user an idea of the current
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position in the overall computation, and allow the user to change context by moving up

or down the call stack, to examine some of the values that brought the computation to its

current state. A debugger that does not provide at least these basic pieces of functionality

is of questionable usefulness.

Requests from the user to the debugger, and replies from the debugger to the user,

are usually phrased in terms of the original source program. However the program being

executed and monitored is the target program, which is written in machine language. Thus

the debugger must communicate with the computer about the executing target program

in terms of the machine language program. Therefore the debugger must act as two-way

interpreter, translating user requests about the source program to equivalent requests about

the target program before passing them on, and translating the computer responses about

the target program into equivalent responses in terms of source program before presenting

them to the user. This situation is illustrated in Figure 1.1.

In order to accomplish this two-way interpretation, the debugger needs a lot of

information about the source program and how it relates to the target program. Since only

the compiler knows fully how the source program and the target program relate to each

other, the debugger must obtain this information from the compiler.

The standard method for passing this information from the compiler to the de-

bugger is via the symbol table and the line table, extra sections of information inserted into

the target program by the compiler specifically for use by a debugger. These sections are

completely separate from the executable instructions and have no impact on program exe-

cution. The symbol table contains information about all the names that occur in the source

program. This data includes file names, subroutine names, and the names of variables and

constants, as well as user-defined type names. For the variable names, the symbol table

also contains information about the type of value the variable is supposed to contain, the

scope(s) in which the variable should be visible, and the memory location in which the

computer will be storing the value of the variable. There are two properties of unoptimized

programs that make it relatively simple for the symbol table to indicate a variable’s loca-

tion: Each variable is assigned a unique relative memory location that will be the variable’s

home location for the entire time the variable is within scope during program execution;

and, every time the variable’s value is updated during the computation, the new value is

written to the variable’s home location in memory. Thus by reporting the variable’s single

location in memory (and its scope), the compiler has told the debugger all it will ever need
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Figure 1.1: Debuggers act as interpreters.
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to know in order to look up the variable’s value.

In addition to the locations for the variables (the data locations), the symbol table

must also give the debugger information about the locations for the pieces of code that

are to be executed (the code locations). The debugger needs to know the names of all the

subroutines in the program and where the code for each subroutine is located, and it also

needs to know how to relate the subroutines in the target program (binary instructions) to

the subroutines in the source program. The line table is used by the debugger to map code

locations between the source program and the target program. The standard practice in

debuggers for unoptimized code is to allow users to specify control breakpoints (positions at

which to suspend program execution) at statement boundaries in the source program. The

user sets these breakpoints by indicating the line number associated with a statement in the

source program. The debugger then suspends execution of the target program immediately

prior to executing the first machine instruction for the specified statement. Identifying

source statement boundaries in the unoptimized source is relatively simple, because of some

relationships and properties that exist between machine instructions in the unoptimized

target program and the statements in the source program from which they were generated.

In particular, all binary instructions that were generated from a single source statement

occur contiguously in the target program1, and the binary instructions in the target program

occur in the same execution order as their corresponding statements in the source program.

The line table only needs to record, for each source statement, the location of the first in the

sequence of corresponding target instructions. Doing so is much simpler than mapping each

individual instruction back to the source. When a user chooses to set a control breakpoint

at a particular source line, the debugger looks in the line table for the first instruction

for that source line, and sets a breakpoint at the corresponding instruction in the target

program.

In addition to the user setting a control breakpoint, there are three other ways in

which the execution of the target program may be suspended. The first is a data breakpoint.

A data breakpoint is set ahead of time by the user. It differs from a control breakpoint

in that the user requests that execution be suspended when the value of a variable is read

or written, rather than when execution reaches a certain source program statement. The

second potential cause of execution suspension is a user interrupt. In this case, the user
1There are a few minor exceptions, but they do not cause significant problems in the generation of line

table information.
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types some control sequence on the keyboard (or perhaps clicks on something with a mouse)

that immediately suspends execution of the program. Users might do so if a piece of the

program is running an unusually long time, and the user suspects the program has gone

into an infinite loop. The final cause for suspension of execution of the target program

is a fault. If the program asks the computer to do something illegal, such as dividing by

zero, or if some system error occurs while the target program is executing, the computer

can immediately suspend execution of the target program. When program execution is

suspended, for whatever reason, the debugger must report to the user the corresponding

position in the source program at which execution stopped. It determines this position by

comparing the value of the current program counter against the line table, and reporting

that execution halted at or within the appropriate source statement.

1.3 Effects of Optimizations on Debugging

Optimizations can transform a program in many different ways. Some of the more

common possible effects of optimizations include moving or deleting entire source state-

ments; changing the order in which variable values are updated; altering the control flow of

the program; changing the relative order of execution events; eliminating or overlaying vari-

ables; and, assigning variables multiple home locations, including registers, during certain

portions of the program.

Some combinations of these effects can have a devastating effect on the ability of a

debugger to perform its tasks. Since all of the optimizations performed by the compiler are

supposed to preserve the semantics and the correctness of the program, the optimized target

program is guaranteed to return exactly the same results and output as the unoptimized

target program, for all inputs (assuming for the moment there are no bugs in the source

program or the optimizer). However the details of the computation in the optimized and the

unoptimized target programs can be quite different. Figure 1.2 shows an extreme example

of this situation.

The original C program shown in Figure 1.2(a) performs a relatively simple op-

eration on a matrix: it progresses through the matrix in a linear manner, assigning to

each element the sum of its four nearest neighbors. The optimizer performs three common

high-level loop optimizations on the program, skewing, loop interchange, and strip mining.

The resulting optimized program is shown in Figure 1.2(b). As can be seen, the optimized
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Original Program After Loop Optimizations

for (i = 1; i < m; i++) { for (j = 2; j < m + m; ++j) {
for (j = 1; j < n; j++) { for (i = max(i,j-m);

i < (min(m-1,j-1) -
max(1,j-m)/64-1)*64;

i+=64) {
matrix[i,j] = matrix[i:i+63,j-1] =

matrix[i-1,j] + matrix[i-1:i+62,j-i] +
matrix[i,j-1] + matrix[i:i+63,j-i-1] +
matrix[i+1,j] + matrix[i+1:i+64,j-i] +
matrix[i,j+1]; matrix[i:i+63,j-i+1];

} }
} matrix[i:max(1,j-m),j-1] =

matrix[i-1:max(1,j-m)-1,j-i] +
matrix[i:max(1,j-m),j-i-1] +
matrix[i+1:max(1,j-m)+1,j-i] +
matrix[i:max(1,j-m), j-i+1];

}

(a) (b)

Figure 1.2: Example of source code before and after optimizations.

program is very different from the original, in spite of the fact that they achieve the same

result.

As was mentioned earlier, there are several properties and relationships between an

unoptimized target program and its source program that make generating the symbol table

and the line table for debuggers for unoptimized code relatively easy and straightforward.

For review, these properties are:

• All program variables are given storage locations in memory, which do not change

throughout the entire execution of the program.

• All updates of variable values are written to their locations in memory.
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• All binary instructions that were generated from a single source statement occur

contiguously in the target program.

• The binary instructions in the target program occur in the same execution order as

their corresponding statements in the source program.

Once the target program has been optimized however, none of these properties are

necessarily true any more. A program variable may be assigned different memory storage

locations at different points in the target program. For some portions of the target program,

a variable may have no home location at all, or the home location may be a register instead

of memory. Not all updates of variable values are written to the home memory location;

sometimes only the register location is updated, and sometimes, in the case of a dead store,

no location is updated. The binary instructions generated from a source statement may

no longer be contiguous due to instruction scheduling. Instructions from multiple source

statements may be interleaved. The same machine instruction may have been generated

from multiple source statements. Some source statements have no corresponding instruc-

tions (dead code), and other source statements have their instructions duplicated. The

order in which source statement instructions occur in the binary no longer matches the

order in which the source statements themselves occur. Because none of these properties

can be relied on once a target program has been optimized, the task of writing a debugger

that translates requests and replies between the target and the source programs becomes

much more difficult. Figures 1.3 and 1.4 illustrates this difference between optimized and

unoptimized target programs.

Figure 1.3 shows a simple C source program and the unoptimized assembly code

that was generated from it on an SGI Mips R4000 workstation. Figure 1.4 shows the same

source program, with the optimized version of the assembly code. The numbers to the left of

the source statements in Figures 1.3(a) and 1.4(a) are the line numbers for the statements.

The numbers to the left of the instructions in Figures 1.3(b) and 1.4(b) indicate the source

statements from which the instructions were generated. As can be seen, the instructions

in Figure 1.3(b) all occur in contiguous blocks corresponding to their source statements,

and they occur in the same order as the source statements. Also the variable values are

all written to memory. None of that is true in Figure 1.4(b). The instructions for source

statements are all interleaved and jumbled, and none of the variable values are written to

memory.
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Original Source Unoptimized Assembly

0 void
1 case_1a (int num, char *str){ /* num starts in $4, str starts in $5 */
2 int i;
3 int j; 6 addiu $16,$4,3 /* i gets num+3 */
4 char *s; 6 sd $16,0($sp) /* store i to mem */
5 7 lbu $17,0($5) /* j gets mem[$5] */
6 i = num + 3; 7 sd $17,4($sp) /* store j to mem */
7 j = (int)str[0]; 8 sd $5,8($sp) /* copy str to s */
8 s = str; 10 lw $25,%call16(foo)($gp)
9 10 ld $4,8($sp) /* load s into $4 */

10 foo(s); 10 jalr $25 /* jump to ‘‘foo’’ */
11 bar(i); 10 nop
12 bar(j); 11 lw $25,%call16(bar)($gp)
13 } /* case_1a */ 11 ld $4,0($sp) /* load i into $4 */

11 jalr $25 /* jump to ‘‘bar’’ */
11 nop
12 lw $25,%call16(bar)($gp)
12 ld $4,4($sp) /* load j into $4 */
12 jalr $25 /* jump to ‘‘bar’’ */
12 nop
13 jr $31 /* return from case_1a */
13 addiu $sp,$sp,48 /* reset stack ptr*/

Summary: 19 instructions; 3 nops;
3 memory writes; 3 memory reads

(a) (b)

Figure 1.3: Source program and equivalent unoptimized assembly code
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Original Source Optimized Assembly

0 void
1 case_1a (int num, char *str){ /* num starts in $4, str starts in $5 */
2 int i;
3 int j; 1 or $30,$4,$0 /* copy num to $30 */
4 char *s; 8,10 or $4,$5,$0 /* copy str to $4 */
5 10 lw $25,%call16(foo)($gp)
6 i = num + 3; 7 lbu $1,0($5) /* $1<-deref of $5 */
7 j = (int)str[0]; 10 jalr $25 /* jump to ‘‘foo’’ */
8 s = str; 7 sd $1,24($sp) /* spill $1 */
9 11 lw $25,%call16(bar)($gp)

10 foo(s); 11 jalr $25 /* jump to ‘‘bar’’ */
11 bar(i); 6,11 addiu $4,$30,3 /* $4 gets num + 3 */
12 bar(j); 12 lw $25,%call16(bar)($gp)
13 } /* case_1a */ 7,12 ld $4,24($sp) /* load spill value*/

12 jalr $25 /* jump to ‘‘bar’’ */
13 ld $30,8($sp) /* spill code */
13 jr $31 /* return from case_1a */
13 addiu $sp,$sp,48 /* reset stack ptr*/

Summary: 15 instructions; 0 nops;
1 memory writes; 1 memory reads

(a) (b)

Figure 1.4: Source program and equivalent optimized assembly code
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1.3.1 Updating Variables in Optimized Code

A common and frequently used function in debuggers for unoptimized code allows

the user, in addition to seeing the current value of a variable, to modify the value. The

target program then uses the modified value throughout the rest of the computation. This

functionality is very difficult to provide once a program has been optimized, and is usually

disallowed.

Whenever the optimizer can determine that a variable will contain a particular

value for a particular portion of the program, it takes advantage of this fact. Because of

optimizations such as folding, propagation, and common subexpression elimination, any

attempt to update a variable in the optimized program might require updating several

other variable values, as well as possibly requiring updating constant values stored in the

instructions themselves. Identifying all the locations that might need to be updated would

require the debugger to have complete information about how the variable was used in

all optimizations. If the debugger required this information for all program variables, the

amount of information would be too large to be practical. Furthermore some optimizations,

such as dead code elimination, may be based on the fact that the compiler knows a variable

will contain a certain value at a certain position. Therefore the optimizer can determine

that a predicate will return a certain value, and the “alternative” branch code will never be

needed, so the compiler never generates any code for it in the target program. If the user

were to update the value of a variable which the compiler happened to use in such an opti-

mization, the resulting predicate value might change, the “alternative” branch code would

be needed, and there would not be any alternative code. The program would apparently

do the wrong thing, making the user believe there was an error in the program when there

was no such error. For these reasons updating variable values in debuggers for optimized

code is universally disallowed. Exploring potential acceptable solutions to this problem is

an open research issue.

1.4 Why Debug Optimized Code at All

Given the fact that it is much easier to write debuggers for unoptimized target

programs, one might wonder if there is really a need to create debuggers for optimized

programs. It seems much simpler to debug the unoptimized target program, and to compile
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with optimizations only after all the errors have been found and corrected. This approach

sounds nice in theory, but there are several reasons why it is not practical.

1.4.1 Latent Bugs in Unoptimized Programs

It sometimes happens that a program exhibits one behavior when unoptimized,

and a different behavior once it has been optimized. A common misconception is that

if there is a difference in behavior between the optimized and unoptimized versions of a

program, the optimizer must have introduced an error into the program. This assumption

is not necessarily true. There are two types of circumstances that can lead to differing

behavior between the optimized and the unoptimized programs: loosely or poorly defined

semantics in the programming language, or an incorrect program. Loose semantics are not

uncommon in the specification of high-level programming languages. A common example of

loose semantics in the language specification is that the order of evaluation of subexpressions

(or arguments, in function calls) is undefined, and left up to the discretion of the compiler. It

is possible that a program may exhibit different behaviors if the optimized program chooses

one order of evaluation and the unoptimized program chooses another.

There are certain types of bugs that, while present in the unoptimized program,

do not manifest themselves until the program is optimized. Usually these bugs take ad-

vantage of loose semantics in the programming language. Since these bugs only appear

in the optimized code, they must be debugged there. Some program characteristics that

optimizations can affect, and which might cause some of these latent bugs to appear, in-

clude the values of uninitialized variables, data layout within the program, and execution

time of various parts of the program (i.e. race conditions). The most common errors of

this type are dynamic memory errors. While there exist tools such as Purify [20] and the

UNIX lint utility which can help find some of these bugs in the unoptimized code, they do

not work in all cases. Some programs use system memory management options to allocate

large chunks of memory at a time. These programs then allocate and deallocate dynamic

memory within the large allocated chunks, only releasing these large blocks of memory at

the end of execution. Purify and similar tools will not find any dynamic memory errors in

these types of programs, yet the memory errors can and do exist, and can exhibit the latent

behavior described above, hence requiring the ability to debug optimized code.
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1.4.2 Debugging Optimized Core Dumps

Sometimes a program bug is manifested by a complete program crash, accompanied

by a core dump. Furthermore there are times when it is necessary to debug from such a core

dump rather than by starting the program over from the beginning. This kind of debugging

is sometimes referred to as post-mortem debugging, because execution has already been

halted, and cannot be resumed. All that can be done is an examination of the state the

program was in when it halted. If the data on which the program was being executed was

real-time data that cannot be recreated, post-mortem debugging may be the only option.

Similarly if a customer reports that a vendor’s program crashed with a core dump and

sends the core to the vendor for debugging, post-mortem debugging must be used. In such

situations if the core dump is from a program that was optimized, then the problem reduces

to the problem of debugging optimized code.

1.4.3 Debugging Software Products

Software vendors must be concerned with the efficiency, as well as with the cor-

rectness, of the programs they develop and sell. Since optimized programs make far better

use of computer resources than unoptimized programs, it is highly desirable, from the ven-

dor’s point of view, to ship optimized products. At the same time, the software market

is extremely competitive. In order to survive, it is imperative to get products released to

market as quickly as possible. Furthermore since no one who sells products that contain

many bugs remains in business for very long, software vendors devote a large amount of

their product development time to testing and debugging their products before they release

them. These circumstances leaves the vendor with some very difficult choices to make. The

options available are: 1). Attempt to do the entire test-debug cycle on optimized code

(which requires a good tool for debugging optimized code); 2). Ship the product unopti-

mized; 3). Test and debug only the unoptimized version, and have faith that the optimizer

will not introduce or uncover any new bugs; or, 4). Double the length of time spent testing

and debugging, once unoptimized, then again optimized2. Option one would obviously be

the best, but there do not currently exist any widely accepted tools for debugging optimized

code. Some software vendors settle for option two, especially as this option also makes it
2The hope is that no new bugs are uncovered when the code is optimized; otherwise there would still be

the need for a tool to debug the optimized code.



16

easy for them to debug any errors that customers might find in the software. Those who do

ship optimized code probably settle for option four. While it may be exaggerating slightly

to state that the test-debug cycle will be just as long the second time around (since the

assumption is that most bugs will have been found in the unoptimized code), the second

round of testing could well be a significant fraction of the first, since it takes time just to

re-run all of the tests and examine all of the results, and since any changes caused by fixing

a bug would require the two-phase process to repeat.

1.4.4 Debugging Programs with Large Resource Requirements

There are some programs which, either because of the time they take to run or the

amount of memory and other resources they require or both, can only be run if the program

is optimized. Thus only the optimized version of such programs can be debugged with an

interactive debugger tool. It might be argued that as hardware continues to speed up at a

phenomenal rate this type of problem will eventually become a non-issue. However it could

be just as reasonably argued that as hardware becomes faster, bigger and bigger problems

(problems that used to be too big to be reasonably computed) may be programmed, so

that the one effect nullifies the other, leaving a need for debugging optimized code. History

tends to bear this trend out.

1.4.5 Required Optimizations

It is the case for certain compilers that some optimizations are such an integral

part of the compiler that the compiler cannot be run without them. Therefore if one wants

to debug programs compiled on such a compiler, one needs the ability to debug optimized

code.

1.5 Why Not Use “Standard” Debuggers

Debuggers designed for unoptimized programs make use of the assumptions and

relationships described previously that exist between a source program and an unoptimized

target program. Such a debugger, when presented with an optimized target program, will

make invalid assumptions, and its behavior can become nondeterministic, or worse, it can

mislead the programmer by giving completely false information about the program being
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Original Program Corresponding Instructions

S0: x = i * j + offset; I0: ld $r4,$sp(0) (S0)
S1: /* code not referencing y */ I1: ld $r5,$sp(8) (S0)
S2: r = foo(x); I2: mult $r6,$r5,$r4 (S0)
S3: y = (r >offset) ? 1 : 0; I3: add $r4,$r6,$r7 (S0)
S4: if (y) { I4: jalr ‘‘foo’’ (S2)
S5: /* code not referencing x */ I5: slt $r1,$r7,$r2 (S3)
S6: } I6: bgez $r1,label.1 (S3)

I7: ldi $r4,1 (S3)
I8: b label.end (S3)
I9: label.1 (S3)

I10: ldi $r4,0 (S3)
I11: label.end (S3)
I12: bgnez $r4,... (S4)

(a) (b)

Figure 1.5: Source code and instructions illustrating two variables with non-overlapping
live ranges sharing a storage location.

executed. For example in an optimized target program, the compiler may have determined

that two particular variables are never live at the same time. Therefore it assigns them both

to the same register. Figure 1.5 illustrates this problem. Variable x in Figure 1.5(a) is live

from statement S0 through statement S2, while variable y is live from statement S3 through

statement S6. These two live ranges do not overlap at all. Therefore the compiler decides

to store both variables in Register 4. Figure 1.5(b) shows the corresponding instructions.

Variable x is in Register 4 from I3 through I6. Thereafter variable y is stored in Register 4,

and the overwritten value of x is lost. Now suppose the user requests the debugger to halt

execution of the program at statement S4. At this point in the program variable x is still

within scope, so the user can ask to see the value of variable x. The debugger looks in x’s

location (Register 4), which at the current time happens to hold the value of y, and returns

that value. Now, unless x and y are supposed to have the same value at that point, the

user believes that variable x has the wrong value, and could spend a very long time tracking

down this seeming error, which really is not at error at all. This type of misinformation can

lead to significant amounts of time being wasted chasing chimerical bugs.
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1.6 Basic Problems Debugging Optimized Code

When designing a debugger for optimized code, the very first questions that need

to be answered are: What information about the target program is the debugger going to

present to the user? In what form will it be presented, and how? These questions comprise

what we call the Debugger-User Communication Problem. Up to this point, we have been

talking about presenting the information to the user in terms of the source program. Indeed

that is the common and most desirable form since, as previously mentioned, the bug will

eventually have to be found and corrected in the source program. However that is not the

only option. There are a large number of alternatives, some more reasonable or practical

than others.

An important issue when considering the debugger-user communication problem,

is transparency. Transparency is the illusion given the user that there is no optimization.

A debugger exhibits transparent behavior if it returns exactly the same responses for all

requests as it would if the target program were not optimized. A debugger that behaves

differently for an optimized program exhibits non-transparent behavior. Transparent be-

havior is also referred to as expected behavior, because the debugger behaves the way a user

expects it to, based on the original source program. The decision about how transparent the

debugger’s behavior should be has a large impact on the rest of the design of the debugger.

There is really a continuum of possible behaviors, with varying degrees of transparency, as

illustrated in Figure 1.6. At one end of the continuum is pure transparent behavior. In

this case the debugger returns exactly the same responses, in all cases, for all inputs, as it

would if the program had not been optimized. At the other end of the continuum is pure

non-transparent behavior. Pure non-transparency means that the debugger makes all the

effects of all optimizations apparent to the user. We do not believe it is possible to achieve

either extreme. Therefore it is more a question of where along the continuum desired be-

havior lies. As is indicated in Figure 1.6, the closer one gets to pure transparent behavior,

the easier it is to relate what one is seeing back to the original source program (the view

being presented is very close to the original program), but the harder it is to understand

why the program is behaving as it is, as the source program one is viewing may bear very

little resemblance to the code that is actually executing. On the other hand, the closer one

gets to pure non-transparent behavior, the easier it is to understand why the program is

behaving the way it is and why it is returning those responses, as the source program being
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viewed corresponds more closely to the executing code, but the harder it is to relate those

responses to the original source program. As there are tradeoffs in either direction, one

must decide on what seems the most appropriate compromise between the two.            

Figure 1.6: The Transparency Continuum.

Once the questions for the Debugger-User Communication Problem have been

resolved, one must determine what information the debugger will need from the compiler

in order to perform its tasks and present the data to the user, and how it will obtain this

information from the compiler. These issues make up what we call the Compiler-Debugger

Communication Problems.

The Compiler-Debugger Communication Problems fall into two broad classes. The

first class has to do with mapping between the source program (or whatever other form is

chosen for presenting data to the user) and the target program. These mapping problems

are commonly known as the location problems. The other class of problems has to do with
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finding and returning the current value of a variable in response to a user’s request. These

problems are referred to as the data value problems.

1.6.1 The Location Problem

The location problem is a bidirectional mapping problem. The debugger needs

accurate mapping in both directions: the source-to-target mapping is used when the user

requests a breakpoint at a particular position in the source program; and the target-to-

source mapping is used when execution is suspended either because of a data breakpoint,

user interrupt or program fault, and the debugger needs to report where, in the source

program, the execution stopped. These problems are compounded by the fact that once

a target program has been optimized, there is no longer a nice one-to-one correspondence

between instructions in the target program and statements in the source program. A single

instruction, or set of instructions, may have been generated from multiple source state-

ments; or a single source statement may not have generated any instructions (because the

compiler determined it would never be executed). The rearranging, duplicating, and inter-

leaving of instructions (and even of entire statements) that occurs in optimized code further

complicates the matter.

The source-to-target mapping is the harder of the two problems. The real question

to resolve is where to set breakpoints for source statements in the target program. Unlike in

the unoptimized program, there are no clear statement boundaries in the optimized code.

It is no longer reasonable to automatically use the first instruction for a statement as its

breakpoint location, as this instruction may occur a long distance from the rest of the

instructions for the statement. The difficulty is increased because a user can have several

different reasons for setting a breakpoint. One reason for setting a breakpoint is to examine

the results of a previous statement, which the user assumes will have finished executing by

the time the breakpoint has been reached. Another possibility is that the user wishes to stop

just before the execution of a statement, in order to examine values that the statement will

use or modify before the modification takes place. Because the locations of the end of the

preceding statement and the beginning of the next are the same location in the unoptimized

target program, implementing a single type of control breakpoint works well for both cases

in unoptimized programs. This property is not necessarily true for optimized programs.

In her pioneering research in this field [47] Zellweger pointed out that there are two basic
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Original Program After Optimization

... ...
12: while (i < j) { 13: j = 10;
13: j = 10; 12: while (i < j) {
14: A[i] = B[i-j];} 14: A[i] = B[i-j];}

... ...

(a) (b)

Figure 1.7: Example of optimizations changing the order of variable assignments

options when deciding where to place a statement’s control breakpoint in optimized code,

either use a semantic breakpoint or a syntactic breakpoint.

The idea behind syntactic breakpoints is that the order of source statements in

the original program, relative to one another, is preserved. Thus when single stepping

through a program the apparent execution order of the statements is exactly what one

would expect from examining the original source program. For example looking at Figure

1.7, the syntactic breakpoint for line thirteen will occur after the breakpoint for line twelve

and before the breakpoint for line fourteen, in spite of the fact that line thirteen does not

occur between lines twelve and fourteen in the optimized program. Because line thirteen is

a loop invariant statement the optimizer moved it out of the loop and placed it before line

twelve. Using the syntactic breakpoint scheme, and setting a breakpoint on line thirteen

would cause execution to suspend on every iteration of the loop, prior to any breakpoint

that might be set on line fourteen, even though the actual code for statement thirteen is

not there any more. Syntactic breakpoints can present difficulties to implementors, as they

sometimes require a breakpoint for a source statement be placed in a location where there

are not any instructions for the statement.

In contrast to syntactic breakpoints, semantic breakpoints are set on the actual

code for the source statement, wherever the code happens to occur in the optimized program.

As Zellweger points out, if one chooses a semantic breakpoint scheme one still has several

options as to which instruction, exactly, gets selected as the breakpoint location: the very

first occurring instruction for the statement (which may be quite far removed for any of the
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other instructions for the statement); every instruction for the statement, or at least every

block of contiguous instructions (if there are any); the first instruction for the statement

that causes any alteration in the user-visible execution state; the first instruction (if any)

that alters any user-visible variable; or the first instruction that “corresponds to the core

semantic effect of the statement”. Most research since Zellweger has chosen the last option

as the definition of a semantic breakpoint ([2, 15, 16, 36, 42, 43]).

1.6.2 Data Value Problems

Data value problems have received the vast majority of attention to date in research

on debugging optimized code ([1, 2, 14, 15, 16, 21, 22, 29, 30, 31, 42, 43]). There are

actually two or three data value problems, depending on whether the debugger is taking a

transparent or non-transparent approach. The first problem is the data location problem.

The data location problem is determining where the current value of the requested variable

is stored, assuming for the moment that it is currently stored somewhere. This problem

arises in optimized programs because, unlike in unoptimized programs, a variable’s value

may be in any of several different locations, either in memory or in registers, at any given

point during the computation. Furthermore a common optimization is to entirely eliminate

updating a variable’s “home location” in memory, unless absolutely necessary (writes to

memory are expensive operations), so knowing the variable’s home location in memory is

not much help.

The second data value problem is the residency problem. It is not uncommon for

an optimizer to determine that a particular variable’s value is not needed for some portion

of the computation. If the value was stored in a register (a fairly common occurrence),

the compiler just re-uses the register for some other purpose without bothering to save the

value that was currently in it, as with variable x in Figure 1.5. Thus the variable’s “current”

value no longer exists in the computer. The computer has evicted the variable, and it has

become non-resident. (Variables whose current values still exist somewhere in the computer

are resident). This situation creates a major problem for debuggers because a non-resident

variable is still within the current scope, and so the user might reasonably and legally request

to see its current value. Adl-Tabatabai and Gross [1] ran some experiments to determine

the frequency of non-resident variables, and found that for the three benchmark programs

they checked, non-resident variables occurred at 30-60% of all possible breakpoint locations.
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Original Program After Optimization

... ...
1: i = 10; 1: i = 10;
2: j = 10; 2: j = 10;
3: if (cond) { 3: if (cond) {
4: for (i = 0; i < n; i++) { 4: j = x;
5: j = x; 5: i = 0;
6: a[j+i] = a[i]; 6: while (i < n) {
7: } 7: i++;
8: } 8: a[j+i-1] = a[i-1];

9: }
10: }

(a) (b)

Figure 1.8: Example of original source program and corresponding optimized source

The Currency Problem

If one is attempting to create a relatively transparent debugger of optimized code

(i.e. hide the effects of optimizations and act as if the code were unoptimized), then there

is also a third data value problem, the currency problem. The currency problem was first

explored by Hennessy [21]. It arises because the debugger is attempting to meet the user’s

expectations for the target program’s behavior, i.e. it is trying to exhibit expected behavior.

Those expectations are based on the source program, which the target program may not

resemble very much after optimization. The main thrust of Hennessy’s work is determining

what response the debugger should give in response to a request for a variable’s value

(assuming for the moment that all values are resident and the debugger knows where to

find them). The problem arises from the fact that if two variable updates in the source

program are independent of each other, then the optimizer is free to change the order in

which the updates take place, which it frequently does. Thus at any given point during

program execution, a variable’s actual value (the current value in the target program) may

or may not correspond to its expected value, based on what the user sees in the source

program. Figure 1.8 shows an example of this problem.
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Figure 1.8(a) shows a small fragment of code, and Figure 1.8(b) shows the equiva-

lent code after optimizations have been performed. The optimizer moved the loop invariant

assignment to j out of the for loop, and made the increment of i the first statement in

the loop rather than the last. Suppose that a user, looking at the original source, sets a

breakpoint at line 6. Execution would be suspended at line 8 in Figure 1.8(b). At this

point if the user requests to see the value of variable i, the debugger must determine that i

has been updated prematurely, and somehow recover its old value. If the user were to set

a breakpoint at line 5 in Figure 1.8(a), and if the debugger is using a syntactic breakpoint

scheme, the corresponding breakpoint would actually be set at line 7 in Figure 1.8(b). At

this point variable j has been prematurely updated, but only on the first iteration through

the loop. On every subsequent iteration the value of j would be current. This example

illustrates just a small sample of some of the issues in the currency problem.

At any given breakpoint, for any particular variable, one of several situations may

be the case. An assignment to the variable which occurs further on in the source program

has already executed; an assignment to the variable which has already occurred in the

source program, has been delayed and has not executed yet; the assignment statement (or

even the entire variable) has been optimized away; or, the assignments to the variable in

the source program happen to match the ones that have executed. In the last case, the

variable’s actual value matches its expected value, so its value is current. In all of the other

cases the actual value differs from the expected value (or there is no actual value), so the

variable is non-current. Sometimes the debugger cannot tell for certain whether a variable’s

value is current or not, as that may depend upon the execution path taken to the current

point. In this case the variable’s value is said to be suspect. A variable whose value is either

suspect or non-current is endangered.

If a user requests to see a variable’s value, and the debugger naively returns its

actual value, and that value is different from the expected value, then the user, who has

no idea of what optimizations have been performed, may well assume that the value being

returned is incorrect and is the result of a program error. The user could then waste a large

amount of time searching for a non-existent bug. Obviously this situation is not desirable.

Therefore debuggers that attempt to exhibit expected behavior must somehow determine

whether the variable is current or not, and if not, must either inform the user that the

current value is unavailable (falling back on truthful behavior); display the actual value and

try to explain where it came from, or at least indicate that it is not an erroneous value (an
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alternative form of truthful behavior); or somehow determine what the expected value is

and present that value. The last option is the most preferred, given that the debugger is

attempting expected behavior, but is also the most difficult, especially given that one must

do this work for every program variable at every possible breakpoint in the program. There

is a large body of research that explores various ways to determine currency and recover

expected values ([1, 2, 14, 15, 16, 21, 22, 29, 30, 31, 42, 43]).

1.7 Characterizing A Solution for Debugging Optimized Code

Before proceeding, it seems reasonable to discuss the desirable characteristics of

a good debugger for optimized code. In truth these are the same characteristics that are

desirable in a good debugger for unoptimized code. These characteristics include:

• The debugger should allow the user to accurately monitor the flow of control through

the program during program execution. In order to do so it needs to give the user an

accurate picture of which statements are executing, and the order in which they are

being executed.

• The debugger should allow the user to examine the current state of the target program,

including the current value of any variable within the current scope of the target

program. The current state also includes the call stack.

• The debugger should allow the user to monitor the execution of the target program

that actually exhibited the erroneous behavior.

• The debugger should be non-invasive, not altering in any way the target program it

is monitoring.

• The debugger should run reasonably efficiently.

The first two characteristics are part of the general definition of a debugger. The

third characteristic in some ways seems like a tautology: If a particular target program is

exhibiting erroneous behavior, why would someone attempt to fix the problem by debugging

a different program? However as will be seen in the next chapter, some attempts to design

a debugger for optimized code have taken this approach.
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The fourth characteristic is in some ways an extension of the third: if the debugger

itself alters the target program, then the program being debugged is no longer the same

as the one that exhibited the erroneous behavior. This characteristic cannot be strictly

adhered to, as a debugger must alter the code slightly in order to insert (and remove)

user requested breakpoints. However this type of modification is the only acceptable one a

debugger can make to the target program.

The final characteristic is added for practicality. Assuming that it were possible

to build a completely accurate, perfect (except for efficiency) debugger for optimized code,

if the debugger takes too long to run no one will want to use it.

1.8 Summary

In this chapter we have presented an overview of compilers and optimizations,

and explained how debuggers work on unoptimized programs. We have also discussed

how optimizations affect debugging. We have explained the need for the ability to debug

optimized code, shown how standard debuggers are inadequate for the task, and described

the basic problems involved in debugging optimized code. We have also briefly touched

upon the characteristics that are desirable in a debugger for optimized code.

1.9 Scope and Goals of this Work

The goal of this dissertation is to present a new paradigm for debugging optimized

code and to demonstrate the benefits and practicality of this paradigm. In the past most

research in this area has started from the assumption that the expected behavior approach,

masking optimization effects whenever possible, is the best approach. In this dissertation

we show the fallacy of this base assumption and demonstrate that there is an acceptable

alternative that is at least as effective in allowing users to debug optimized code.

In Chapter 2 we discuss previous and related work in this field. Chapter 3 presents

the theory of our solution to the problem of debugging optimized code. In Chapter 4 we

describe the implementation of our solution within an existing commercial compiler and

debugger. Chapter 5 presents measurements and analysis data from our implementation

and discusses these results, and Chapter 6 presents our conclusions.
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Chapter 2

Related Work

In this chapter we discuss past and present research in the area of debugging op-

timized code, as well as some other research that relates to our approach. Research on

debugging optimized code can be classified into five broad categories: non-interactive ap-

proaches; transparent, invasive approaches; transparent, non-invasive approaches; currency

determination; and non-transparent approaches.

2.1 Non-interactive approaches

A major motivation for debugging optimized code is the fact that a program may

contain a latent bug which only manifests itself after the program has been optimized. Since

the program only exhibits its erroneous behavior when optimized, it must be debugged op-

timized. As explained in the previous chapter, this difference in behavior between the

optimized and unoptimized versions of the program (assuming for the moment that the op-

timizer is correct) can be attributed to incompleteness of the source language specification.

Anything in the source language specification that is left as “undefined” leaves an opening

for this kind of behavior. Dynamic memory access errors, while not the only culprits, are

a common source of these undefined behaviors, especially in C. Eliminating these errors

could, in some cases, significantly reduce the occurrence of latent bugs that only appear

after optimizations. Since dynamic memory access errors are very common and often quite

difficult to pinpoint, several approaches have been suggested that are aimed specifically at

finding or preventing these types of errors, before they manifest themselves [5, 18, 20].

One of these approaches was proposed by Austin, Breach and Sohi [5]. In their
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method special bookkeeping data structures are wrapped around all pointers within the

program. As the program executes, information in these special data structures is updated

appropriately. Before reading or writing through any pointer reference, the contents of the

bookkeeping data are checked and any attempts to incorrectly access memory are caught

and reported. This approach finds all pointer and array access errors within those portions

of the code that execute. Implementing it requires a complete revision of the compiler, as

well as modifying malloc, free, realloc, and any dereferencing operators.

Evans [18] proposed a static approach for detecting dynamic memory errors. It

involves the programmer adding annotations to the code at variable declarations and inter-

face points. These annotations can then be used by his tool, LCLint, to help catch dynamic

memory errors. This approach works very well and succeeds in catching many, though not

all, such errors, as some can only be caught at runtime.

Purify [20] is a well-known widely available tool that also help programmers find

dynamic memory errors in their programs. Purify works by inserting instructions directly

into the object code generated by the compiler. These extra instructions check every mem-

ory access during program execution, allowing the tool to detect access errors. This ap-

proach is very effective much of the time.

All of the approaches described above help reduce dynamic memory errors, which

can cause latent errors that require debugging of optimized code. Thus they would com-

plement a debugger for optimized code, though none of the work is particularly directed

towards that goal. In contrast Jaramillo, Gupta, and Soffa [24] attempt to provide a com-

plete alternative to interactive debugging of optimized code. They have designed and built

a system that takes both the optimized and unoptimized executables for a program, and

compares the runtime behavior of the two versions of the program. Their tool, given an

input, executes both versions of the program in parallel on the input, monitoring their exe-

cutions. If at any time the semantic behavior of the optimized program diverges from that

of the unoptimized program, their tool flags the location at which the divergence occurs,

and determines which optimizations were responsible for the differing behavior. The user

can then either turn off the optimization responsible for the differing behavior, or examine

the source near the identified location in order to determine which piece of code caused the

optimizer to generate incorrect code.
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2.2 Transparent approaches

Research on source-level interactive debugging of optimized code really started in

the early 1980’s, with work by Hennessy [21] and by Zellweger [46, 47]. In his paper Hennessy

first identified and described the currency problem. Recall that the currency problem arises

when the user requests to see the value of a variable, and the variable’s actual value may be

different from the value the user expects, due to optimizations that may reorder or delay

updates of variable values. In his paper Hennessy defines the terms current, noncurrent,

and endangered with respect to variable values, as well as presenting the first scheme for

attempting to recover the expected value for noncurrent variables, using roll-forward and

roll-backward techniques. His ideas serve as the foundation for much of the research done

in this area. Wall, Srivastava, and Templin [39] and Copperman and McDowell [14] later

revised Hennessy’s original algorithms to correct for changes in compiler technology that

invalidated some of Hennessy’s original assumptions.

Zellweger [47] was the first researcher to thoroughly investigate the topic of de-

bugging optimized code. The first half of her dissertation is a complete analysis of all the

problems optimizations can cause for debuggers, as well as descriptions of various possible

approaches that might be taken to solve these problems. She does an excellent job of iden-

tifying and defining all of the major problems in this area. She also does a very thorough,

complete job of considering all possible approaches for solving the problems, outlining the

advantages and disadvantages of each approach. She defines many terms that have since

become standard in debugging optimized code literature. Nearly all later work on debug-

ging optimized code (including this) has built heavily on her work. In the second half of her

dissertation, Zellweger describes her solution to debugging optimized code in the presence

of two control-flow optimizations, cross-jumping and function call inlining. In her approach,

the debugger inserts code into the optimized target program to collect information about

execution paths. It then uses this information to help mask the effects of these two opti-

mizations from the user and allow the user to perform “normal” debugging on the optimized

program. This approach worked reasonably well on the two optimizations it addressed.

2.2.1 Invasive Debugging

In this section we will briefly review transparent approaches to debugging opti-

mized code that are invasive, i.e. they make alterations to the binary, in order to simplify
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or allow debugging. A concern with this type of approach is that altering the binary might,

in some cases, mask the error. The likelihood of an error being masked depends heavily on

characteristics of the source language of the program.

Hölzle, Chambers, and Ungar [22] take the approach of dynamically deoptimizing

the function in which the user wishes to perform debugging. They also chose not to have

their compiler perform certain optimizations, in order to allow the user full debugging

capabilities. Their approach provides full expected behavior without requiring any changes

to the debugger. The language for which they did this work is SELF, which is a pure

object-oriented language with garbage collection. Therefore, while their approach does not

debug the optimized code, the probability of the error being masked is small.

Pollock, Bivens, and Soffa [29] take a similar approach. They use incremental

analysis and recompilation to “tailor” programs. If the user enters a request that cannot be

properly serviced by the debugger because of optimizations, they incrementally re-compile

the program, eliminating those particular optimizations that prevent the debugging request

from being serviced in the expected manner.

Shu [31] makes heavy use of hidden breakpoints to capture data about which

execution path was taken in order to provide expected behavior. On reaching a user-specified

breakpoint, he uses information obtained from the optimizer about the optimizations that

were performed to “undo” the optimization effects for the user. His solutions appears

preliminary; he does not explain how he would deal with several important aspects of

debugging optimized code.

2.2.2 Non-Invasive Debugging

The first complete, non-invasive solution for debugging optimized code was pre-

sented by Coutant, Meloy, and Ruscetta [16] in 1988. Their approach made no changes

to the optimized code whether it was compiled for debugging or not. They were the first

to track variable locations through registers as well as memory. They introduced the con-

cept of a variable range table to keep track of all the locations where variables are kept

throughout execution. Variable range tables have since become standard for debuggers of

optimized code. Coutant, Meloy, and Ruscetta concentrated more heavily on the data value

problems, than on code location and mapping issues. They detect noncurrency, but unlike

most previous approaches, do not attempt any recovery. Instead they take a conservative,
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truthful approach, indicating when variables values are unavailable, or how they might be

different from what the user expects. The debugger they describe, the Hewlett-Packard

DOC debugger, is one of only two commercial debuggers for optimized code of which we

are aware.

Adl-Tabatabai was the first to identify and study the variable residency/eviction

problem [1, 2, 3]. He uses dataflow analysis techniques to identify evicted variables and

also to detect current, noncurrent, or endangered variables. His approach performs limited

recovery of noncurrent variables, but no recovery for evicted variables. As with Coutant,

Meloy, and Ruscetta, Adl-Tabatabai concentrates heavily on data value problems. His ap-

proach is a truthful one, telling the user when variable values cannot be accurately reported

due to optimizations, and attempting minor recovery of the expected values.

The most recent transparent approach has been taken by Wu et. al. [43, 44].

Wu focuses heavily on breakpoints and mappings between source statements and machine

instructions, and in particular his focus is on providing expected behavior at user defined

control breakpoints. In order to do this, the debugger (with the aid of special information

from the compiler) identifies an intercept instruction in the binary which precedes the in-

struction for the actual breakpoint. When execution reaches the intercept instruction, the

debugger takes over control and emulates execution of the program up to the breakpoint

instruction. During the emulation, the debugger is careful to execute exactly those instruc-

tions (and only those instructions) necessary to provide the user with expected behavior at

the breakpoint. Once the breakpoint has been serviced, the debugger performs some clean

up and eventually returns execution control to the kernel. This approach works pretty well

for those cases it is designed to handle. However because it is emulating expected behavior

rather than truly executing all the binary instructions, occasionally it will return a value

that is different from the value the binary would really have calculated, which might in

effect mask a bug that the user is trying to find. It also has trouble if execution halts for

any reason other than a user set control breakpoint.

2.2.3 Currency Determination

Detecting and recovering from noncurrent or endangered variables is one of the

most difficult aspects of transparent debugging of optimized code. Consequently several

researchers have concentrated exclusively on finding good solutions to the currency problem.
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The first of these was Copperman [13, 15]. He constructs a unified flow graph

that contains information about both the unoptimized and the optimized programs, and

how they relate. He performs a reaching definitions analysis on this graph to determine

noncurrency of variables. His approach captures the effects of global optimizations, but not

of translation to machine code, for example he does not deal with register allocation. He

does not discuss recovery of noncurrent values. He does mention in passing the possibility

of using a “representative instruction” for setting breakpoints. This is very similar to our

idea of key instructions.

Wismüller also uses flow graphs to determine currency of variables [42]. Unlike

Copperman, who combined all his information into a single graph, Wismüller uses separate

source and object code flow graphs, and maintains information for mappings between them.

This approach allows him to cope with optimizations that may make major changes to the

control flow of the program. Copperman’s method could not deal with such optimizations.

Like Copperman, Wismüller uses a reaching definitions dataflow analysis on the graphs

to help determine the currency of variables at breakpoints. In his approach, the compiler

generates the graphs and debug information, and a separate program, which can be embed-

ded in the debugger, does the currency determination. This approach makes no distinction

between noncurrent, nonresident, or endangered variables. It also makes no attempt at

recovery.

More recently Dhamdhere and Sankaranarayanan have proposed a dynamic ap-

proach to currency determination [17]. They create a minimal unrolled graph of the pro-

gram and use timestamps collected dynamically during program execution to determine

execution paths. They then perform dataflow analysis on the minimal unrolled graph for

the execution path taken to determine the currency of variables at a breakpoint. They

also attempt recovery of noncurrent scalar variables in certain situations. It is unclear how

invasive their approach is.

2.3 Non-transparent approaches

The Convex debugger, CXdb [9, 35], is the only other commercially available de-

bugger for optimized code of which we are aware (the DOC debugger described by Coutant,

Meloy, and Ruscetta is the first). The designers of CXdb take a completely different ap-

proach to debugging optimized code. They abandon the idea of transparent behavior in
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favor of accurate, truthful behavior. CXdb displays the original source code for the user.

However it allows the user to “see” the optimizations that have been done to the code

by the use of some complex code highlighting and animation. It uses visual feedback to

present the effects of the optimizations on a program’s behavior. CXdb also tackles debug-

ging optimized code at a finer granularity than is usually attempted, analyzing the code at

the expression level rather than the statement level. While we believe this approach is a

large step in the right direction, there are several drawbacks to the implementation. CXdb

displays the original source and then attempts to explain what is actually happening in

the binary by highlighting various expressions within the source statements as the corre-

sponding instructions are executed. There are no accompanying explanations given as to

why the cursor is hopping and leaping all over the code (sometimes in a rather repetitive

manner). Unless the user is pretty well acquainted with the types of optimizations that

might be performed on the code, she may have a hard time understanding what is going on.

Furthermore this approach seems to depend heavily on the user single-stepping through the

code. If the user sets a breakpoint and executes up to that point, or if the user is attempting

to debug from a core dump, there is no moving cursor to aid the user in understanding how

optimizations affected the code.

Cool [12] took an approach more similar to ours. He explored displaying the effects

of instruction scheduling on a VLIW machine by showing the user what the transformed

source would look like. His approach generates an optimized version of the source for a

single optimization (instruction scheduling), and displays the optimized source side by side

with the original source. He does not discuss data value or code location problems in depth.

His design has not been implemented.

Another piece of work along similar lines was done by Faith [19]. In his disserta-

tion he investigates the tracking of information necessary to provide debugging capabilities

for optimizations that are performed as a set of program transformations on a tree-based

representation of the program. Given such an optimizer, he defines an automatic system

for tracking the necessary information. This approach is non-invasive and requires minimal

assistance from the optimizer writer. As optimizations are performed, his system builds a

log of the actions applied to various parts of the tree. This log can be “replayed” to trans-

form the original program into the optimized program. Thus any particular stage of the

optimization can be reconstructed if desired. This information allows an accurate mapping

between the original source and the optimized target program. Any intermediate phase of
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the AST can be rebuilt and then translated back into a program in the source (or target)

language. His system is not designed to handle currency determination, but can be extended

to allow implementation of Adl-Tabatabai’s currency determination dataflow analyses. His

system works well for providing truthful explanations of variable values. However it does

require that all optimizations be implemented as tree transformations.

2.4 Other related research

The work described in this section is not directly related to debugging optimized

code, but is related in various ways to our work. Both Arsac [4] and Loveman [26] have

investigated performing direct transformations on a source program to optimize the source

(before it goes through compilation). Arsac selects the appropriate source transformation

from a preexisting catalogue of transformations. Loveman discusses having the program-

mer perform (with some slight computer aid) many optimizing source transformations that

require having a certain knowledge about the program which it would be difficult or impos-

sible for the compiler to deduce without human intervention. These papers demonstrate

that many interesting optimizations can be represented at the source level.

Boyd and Whalley [7] designed a debugger for their optimizer itself, rather than

for the optimized program. Their optimizer, vpo, is designed to be very portable, and has

been incorporated into C, Pascal, and Ada compilers. Their approach requires recompiling

the program in order to find the errors. It finds the first transformation (optimization)

that produces incorrect output. They make the assumption that if there is any observable

difference in the behaviors of the optimized and unoptimized versions of the program, the

optimizer must have introduced an error.

Ottenstein and Ottenstein [28] point out that in the process of performing opti-

mizations, certain types of program bugs may become obvious which would otherwise be

difficult to identify and locate. Thus they recommend performing correctness analyses while

optimizing the program, to eliminate some of these bugs.

Some of the work we perform when generating the optimized source code is remi-

niscent of term rewriting systems and could possibly be done using such a framework [38].

In particular, rewriting multifunctional language constructs (single language constructs that

perform multiple tasks, such as the for statement in C) in simpler terms, as well as dis-

playing the effects of certain global optimizations could all be done using such a system.
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The tracking of key instructions throughout the compiler also has a lot in common with

this work, but unless the compiler were written with such a system in mind, modifying it

to propagate key instructions in this manner would require too much work.

Finally there is a large body of work that has been done in the area of reverse

engineering [8, 10, 11, 23, 33]. We do not use reverse engineering techniques for generating

the optimized source, other than to help determine the correct order for the optimized

source statements based on the optimized binary.
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Chapter 3

Non-Transparent Solutions for

Debugging Optimized Code

This chapter presents a non-transparent approach to debugging optimized code.

It explains what an optimized source program is, how it can be generated, and the use of

optimized source programs for debugging optimized code. It also introduces the notion of

key instructions, and explains their importance and use. It presents solutions to the classical

problems associated with debugging optimized code, as well as presenting a practical scheme

for eviction recovery. In addition it discusses the role of a graphical user interface in this

approach.

3.1 Solution Overview

Most of the problems that occur when attempting to debug optimized code stem

from the fact that the optimized target program does not correspond very closely to the

source program, and therefore none of the nice relationships used by standard debuggers

exist between these two versions of the program. Most previous approaches to debugging

optimized code attempt to hide this fact. In these approaches the compiler and debugger are

forced to go through elaborate contortions in order to match the user’s expectations about

the program. Even so, these approaches do not always succeed. In some cases optimizations

have changed the program so much that the user’s expectations cannot be met. In those

situations these approaches fall back on truthful behavior, usually telling the user that

the requested task cannot be performed or the requested data cannot be retrieved. These
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unexpected failures can be confusing for the user.

Instead of masking the effects of optimizations, we reveal them to the user, thus

giving the user a better understanding of the target program and simplifying many of the

problems associated with debugging optimized code. The cornerstone of our solution is the

idea that rather than the debugger attempting to meet the user’s expectations of what the

program state ought to be, the debugger should be enlightening the user as to what the

program state is. This goal can be achieved by generating and using an optimized version

of the source program. This optimized source allows the user to have a more accurate

picture of the executing target program. The optimized source program, while similar

enough to the original program to be recognized and understood by anyone familiar with

it, will correspond much more closely to the optimized target program. Ideally this closer

correspondence will allow many of the nice relationships that existed between the original

source and the unoptimized target program to also exist between the optimized source and

the optimized target program. The debugger can then communicate with the user about

the executing target program via the optimized source. This use of the optimized source

will enable the debugger to perform its tasks reasonably well with very little modification.

By far the most difficult of the problems associated with debugging optimized code

is the currency problem. The root of this problem is two-fold: The traditional debugger

is attempting to hide all the effects of optimizations, pretending that the original source

program gives an accurate view of the executing target program; however, the source pro-

gram does not accurately reflect the order of execution events in the target program. These

circumstances lead, among other things, to variable assignments occurring out of order,

with respect to the original source program. Detecting these out-of-order assignments and

recovering the expected variable values constitutes the currency problem. By generating an

optimized version of the source program it is possible to show the user the order in which

variable assignments are actually executed. The user then expects assignments to occur

in the same order as shown in the optimized source, which they do. Since there are no

out-of-order assignments in this case, the entire currency problem, with all of its attendant

difficulties, disappears.

Some of the advantages of using optimized source to reveal the effects of optimiza-

tions include:

• This approach allows for a simple solution to the location problem, since statements
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in the optimized source occur in the order in which they are executed in the target

program.

• This approach eliminates the currency problem entirely, as there are no out-of-order

variable updates in the optimized source.

• Unlike some approaches, this one does not require a tight coupling of the compiler

and the debugger. Also it can be retrofitted to existing compilers and debuggers.

• By revealing some of the effects of optimization, such as a piece of code that is unex-

pectedly dead, this approach may allow users to find certain errors more easily than

they could using a transparent approach.

• By displaying some of the effects of optimization, it becomes easier to identify certain

types of bugs within the optimizer itself, and to determine whether the error existed

in the source program or was introduced by the optimizer.

• Allowing programmers to see optimization effects helps them learn to write more

efficient programs. Seeing how the compiler optimized their programs may point out

issues they had not previously considered.

Revealing some of the effects of optimizations is not a completely novel concept.

In her dissertation, Zellweger states, “A major stumbling block when debugging optimized

code is that the programmer does not know what the transformed program looks like.”[47,

p. 85] Zellweger then goes on to consider the possibility of “an automatic source-translator

that could give the programmer a new version of the source program that showed the

effects of optimizations”. She discusses the major problems she sees with such a proposal,

and ends up rejecting the idea. At the time she wrote her dissertation, this conclusion

was reasonable. However the state of computer science, particularly with respect to user

interfaces, has changed dramatically since then, and what was infeasible in 1984 is now

practical and achievable.

Zellweger’s main objection to this approach is that the user will be confronted

with a new program which she did not write, and she will have to expend large amounts

of time and energy understanding this new program and how it relates to the original

source. No useful debugger activity can take place until the user has grasped how the

new program works and its relation to the original. This problem would indeed have been
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insurmountable in the early 1980’s. With the advent and proliferation of graphical user

interfaces, windows, mice, screen pop-ups, etc. it is now possible for the computer, via

a good interface, to assume a large portion of this task, displaying relationships between

the optimized source and the original source in a variety of ways. The user’s burden of

understanding the optimized source can be minimized, and this approach becomes viable.

3.2 What is Optimized Source?

Up to this point we have been talking about an optimized source program without

giving a really good definition of what we mean. Although the phrase “optimized source

program” could be applied to a source program that has undergone any number of modifica-

tions and optimizations, our concern is primarily with user-visible structural changes. The

relevant modifications are obtained by applying a series of transformations to the source

program to reflect the optimizations performed by the compiler. These transformations

can include reordering the code, rewriting expressions, replacing language constructs with

different but equivalent constructs, duplicating code, or deleting code. As the name im-

plies, the optimized source program is a partially optimized version of the original source

program.

To make some optimization effects visible, the original source language may need

to be extended by pseudocode, and additional comments may be inserted into the opti-

mized source code for explanatory purposes. The need for pseudocode will depend on the

source language and the optimizations to be shown. For example, if the source language

is FORTRAN, and one were trying to show a strength reduction optimization explicitly in

the source, one might need to introduce pointers into the optimized source. Since standard

FORTRAN does not contain pointers, this case is one where the introduction of pseudocode

would be appropriate. Obviously if pseudocode is used in the optimized source, that code

will not compile. Since its purpose is to convey information, serving as an intermediary

between the original source code and the target code, non-compilability is not a problem.

For some languages, such as C, there may be no need to introduce pseudocode.

Since one knows at the time one is designing the optimized source generator what

the source language and the selected optimizations are, one ought to be able to determine

ahead of time what types of pseudocode will be required, and which situations will require

it. This advance knowledge allows for careful design of the pseudocode, keeping the use
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of such constructs to a minimum. We do not advocate an ad hoc use of pseudocode, as

introducing too many foreign constructs to a user may confuse her too much, rendering the

optimized source useless.

Given that we are trying to generate a source program that more closely resem-

bles the target program, and given that reverse engineering, a moderately well understood

discipline, generates source programs from target programs, a natural question is why not

use reverse engineering techniques to obtain an optimized source program directly from the

optimized target code [8, 10, 23, 33]. The reason for not doing so is that the new program

must be recognizable and understandable by someone familiar with the original program.

Due to the loss of some types of control flow data, as well as the nature of certain op-

timizations such as software pipelining and loop optimizations, code generated by reverse

engineering is likely to be unfamiliar and hard to comprehend. To reiterate a very important

point, if the user cannot understand how the optimized code relates to the original program,

then the user will have difficulty in determining what meaning and significance to attach

to it or how to use it. By starting from the original program and gradually transforming

it we retain all the parts of the original program that were not involved in the compiler

optimization process, such as comments, declarations, or pre-compiler directives, as well

as high level constructs such as structured control flow statements, which get lost in the

compilation process. By keeping these features of the original program, the modified source

code is more easily recognizable. Also, by starting from the original program, irrelevant

information about the optimizations can be suppressed. Using reverse engineering, one has

no such option.

Not all optimizations can be expressed at the source level, nor is it desirable to

do so. Fine-grained instruction scheduling is an example of such an optimization. Another

example is register allocation and spilling. If the modified source code were required to

express all the effects of all optimizations, assuming that were possible, the final result

would be very similar to the assembly code, thus defeating the purpose of using the source

language. This situation raises two important questions: which optimizations should be

considered when deriving the optimized source, and how can the effects of these optimiza-

tions be reflected in the source language. First we will address the choice of optimizations.

Showing the effects of optimizations is discussed in Section 3.5.

When deciding which optimizations to reflect in the optimized source, one should

keep in mind its purpose. The optimized source program shows the user what is happening
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in the target program, but at the source level. The user wants to know which source

statements are executing and when they are executing. The user needs an accurate idea

of which variables exist at any given time and what values they contain. Users need not

see low level machine specific optimizations. Therefore the optimizations of interest are

those that visibly affect source code constructs, namely those that eliminate source code,

move source statements, or change the form of source statements (e.g. altering expressions

to use different constants, variables, or operators). One needs to be careful in considering

optimizations that change the form of source statements. Some changes, such as replacing

multiplication with register shifts, are probably not relevant, while others, such as using

a different constant or variable in an expression, are. The optimizations that we have

focused on in our implementation are code motion, coarse-grained instruction scheduling,

common subexpression elimination, partial redundancy elimination, copy propagation, and

dead code elimination. Other important optimizations that visibly affect source constructs

include function call inlining and high-level loop optimizations.

There are two basic requirements the optimized source code must meet in order

to be useful:

• It must be recognizable and understandable by someone familiar with the original

program.

• It must correspond closely enough to the optimized target program to allow for a

consistent and meaningful mapping between the two.

These two requirements are in direct conflict with each other. One of the difficult and

interesting research issues has been to find an appropriate balance between them. The more

one modifies the original program to correspond to the target program, the less recognizable

and understandable it is likely to become. Referring to the transparency continuum shown

in Figure 1.6 and reproduced here as Figure 3.1, one could visualize that at one end of

the continuum is the original source code, and at the other end is a program obtained by

reverse engineering the optimized target program. Our concept of optimized source code

falls somewhere between the two – the exact point on the continuum will vary depending

on the intended use and audience.
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Figure 3.1: The Transparency Continuum
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j = num++ * 3 + (int *)str[0]; I0: lbu $21,0($5)
I1: mult $1,$4,3
I2: addu $18,$21,$1
I3: addiu $16,$4,1

(a) (b)

Figure 3.2: Selecting key instruction for assignment statement

3.3 Key Instructions

A critical characteristic of the optimized source is that the order of statements

in the source must reflect their order of execution. Determining the order in which the

source statements will be executed becomes complicated after optimization, as there is no

longer a clear concept of individual source statements in the target code. The instructions

for statements have been broken up, duplicated, recombined, and interleaved, making it

difficult to state where one statement ends and another begins. In order to deal with

this problem we use key instructions. For any source statement, its key instruction is the

single low level instruction that most closely embodies the semantics of that statement.

For example, the key instruction for an assignment statement is the one that stores the

assignment value either to the variable’s location in memory, or to a register (if the write

to memory has been eliminated). The key instruction for a function call is the jump to

the code for that function. The concepts underlying key instructions are not entirely new.

Both Zellweger [47, p. 59] and Copperman [15, p. 55] mention something similar when

discussing possible implementations of semantic breakpoints. Zellweger suggested using

instructions that show the key statement effects as one reasonable method for implementing

semantic breakpoints. Copperman mentioned the possibility of a representative instruction,

the “instruction generated from a statement S that best corresponds to the statement

boundary”. However neither of them pursued the concept or fleshed it out.

Identifying key instructions for most types of statements is straightforward. Given

the statement type and the set of instructions generated from the statement it is easy to pick

out the key instruction. For control flow statements it is the first branching instruction; for
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function calls it is the jump to the code for the function. The key instruction for an assign-

ment statement, on the other hand, is more difficult to identify. Figure 3.2 illustrates this

point. Figure 3.2(a) shows an assignment statement in C. Figure 3.2(b) shows the optimized

instructions generated from that statement. The variable num begins in register 4, and the

variable str begins in register 5. The first instruction, I0, gets the value corresponding to

“str[0]” and stores it in register 21. The next instruction multiplies num by 3 and saves

the result in register 1. The third instruction adds the results of the first two, leaving this

sum in register 18. The final instruction then adds one to the value of num and puts the

result in register 16 (which now becomes the new location for num). By doing this careful

semantic analysis of the instructions, one can quickly conclude that the key instruction for

the assignment statement in Figure 3.2(a) is I2, which calculates the entire right-hand side

of the assignment and leaves the result in register 18 (the new location for j). However

the only way to select the key instruction for this statement is through such a semantic

analysis of the source statement and the instructions generated from it. There are three

circumstances that contribute to this difficulty in identifying key instructions for assignment

statements. First, optimizations often eliminate the instruction that writes the value to the

variable’s location in memory, as is the case in this example. Thus the key instruction will

be the instruction that calculates the final value for the right-hand side of the assignment

statement. It could be any one of a number of operator instructions, any of which could

occur multiple times in the calculation (in the example shown, the key instruction is an

addition instruction). The upshot is that one cannot rely on the type of the instruction for

identifying key instructions for assignment statements. Neither can one use variable names

to sort out the key instruction, because there are no variable names in the instructions.

This lack of variable names is the second contributing factor. Finally, one cannot rely on

the order of the instructions to identify the key instruction for an assignment statement.

While the key instruction is likely to be among the last few instructions for the statement,

it is not necessarily the final one. The example in Figure 3.2 shows a circumstance where

the key instruction is not the last instruction for the source statement. The combination of

these three circumstances makes it impossible to select the key instruction for assignment

statements purely by examining the instructions. As stated above the only way to select

the key instruction for an assignment statement is to carefully examine the semantics of

the source assignment statement and of each of the instructions. Doing so would require a

complicated analysis. However the compiler itself does perform the required analyses ear-
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lier in the compilation process, when it first parses the source and generates the internal

representation of the program. Therefore it makes sense to take advantage of the compiler.

In our implementation of these ideas we have the front end of the compiler tag the pieces of

the internal representation that will eventually become these key instructions. It tags them

when the internal representation is first generated. These tags are then propagated through

the compilation as the optimizations are being performed, and when the final instructions

are generated, the key instructions for assignment statements are already tagged.

Key instructions turn out to have a variety of uses. They represent the locations

in the target program where their corresponding source statements execute. Therefore

they are the obvious choice for setting semantic breakpoints, thus solving the most difficult

part of the location problem. Also the execution order of the key instructions indicates the

order in which the corresponding statements should occur in the optimized source. Lastly by

indicating which instructions correspond to assignments to source variables, key instructions

allow a much simpler, more robust scheme for collecting variable location information than

was previously possible (see Section 3.6 for details).

3.4 Generating Optimized Source

During the optimization process, the source program is first translated to an inter-

nal representation, and then portions of the internal representation are moved, duplicated,

separated, eliminated, or altered. In order that the optimized source program be recogniz-

able to someone familiar with the original program, fragments of the original program should

be used as much as possible to construct the optimized source code. The optimized source

may contain original source statements that have been reordered, modified slightly, or split

apart. The optimized source may also contain new statements inserted to make particular

optimization effects explicit. As mentioned earlier it might contain fragments of pseudocode

designed to explain important optimization effects which cannot be adequately described

using constructs in the source language. In addition, the optimized source program must

somehow indicate original source statements that have been eliminated.

Before the effects of optimizations performed by the compiler can be reflected

in the optimized source, the tool generating the optimized source must know precisely

what optimizations (at least of those on the selected list) the compiler performed where,

and precisely what it did (e.g. it substituted x for y at line 73). Therefore the compiler



46

must collect detailed information about the optimizations of interest as it performs them

and pass this information on to the tool that generates the optimized source. Decoupling

the performance of the individual optimizations from the generation of the source that

shows the optimization effects, has several benefits. This approach allows the generation

of the optimized source to be completely independent of the implementation details of the

optimizations. It is a more robust approach, as it is less likely to break every time the

compiler writer wishes to improve the optimizer. Furthermore it allows the generation

of the optimized source to be postponed until all optimizations have been performed, thus

making sure that the optimized source is as accurate as possible, and allowing optimizations

whose effects were overwritten by later optimizations to be “skipped” when generating the

optimized source (one can go directly to presenting the effects of the later optimizations).

3.4.1 Reordering source statements

An essential requirement for the optimized source is that the order in which state-

ments occur in it accurately reflect the order in which the instructions for those statements

will be executed. In order to meet this requirement, one must have knowledge about how

the compiler rearranged the statements and some mechanism for identifying source state-

ments in the optimized internal representation. Key instructions have been introduced

precisely for this purpose. The compiler can tag the key instruction(s) in the generated

target program for each source statement that was not eliminated. The execution order in

which these key instructions occur in the target program then dictates the order in which

their corresponding source statements should occur in the optimized source code.

3.4.2 Modifying source statements

To show the effects of certain optimizations, or to preserve the semantics of the

program, some original source statements may need to be modified. Figure 3.3a shows a

few lines of code from a source program. After these lines have completed executing, the

variable i should contain the value of “3 * y - 17” and the variable num should contain

the value of “y + 1”. During the optimization process, the order of these calculations was

changed, as shown in Figure 3.3b. To preserve the semantics of the original program it is

necessary to change the constant from 17 to 20, to account for the fact that num is now

incremented before the value of i is calculated. Figure 3.3c shows the correctly updated
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(a) Original Code

num = y; /* num == y */
i = 3 * num - 17; /* i == 3 * y - 17 */
num++; /* num == y + 1 */

(b) After Reordering (Wrong)

num = y; /* num == y */
num++; /* num == y + 1 */
i = 3 * num - 17; /* i == 3 * (y + 1) - 17 */

/* == 3 * y - 14 */

(c) Reordered & Updated (Correct)

num = y; /* num == y */
num++; /* num == y + 1 */
i = 3 * num - 20; /* i == 3 * y - 17 */

Figure 3.3: Reordering & Updating Code

code.

3.4.3 Inserting new code

There are transformations such as common subexpression elimination for which

new statements must be added to the source code to illustrate the optimization. For ex-

ample, an assignment statement might be inserted at the point where the subexpression

is evaluated, assigning the subexpression to a newly generated variable. This new variable

then can be substituted throughout the modified source wherever the original subexpression

evaluation is eliminated by the compiler.

3.4.4 Eliminating source code

A standard feature in most optimizing compilers is elimination of dead code. The

optimized source code must make clear which source statements were eliminated by the

compiler. There are two alternative methods for presenting source code elimination to

the user. The first is to eliminate the dead source statements from the optimized source
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program entirely. This approach does not seem like a very good solution, as the user may not

realize immediately that a particular source statement has been eliminated entirely from

the program; the user may assume instead that the statement has been moved to some

other portion of the program. In such a case she may examine the entire program before

realizing that a particular statement is not in the optimized source. Furthermore upon

realizing that the statement is missing, the user still may not attach the desired significance

to the discovery. She might assume instead, for example, that the compiler or the optimized

source generator made some kind of mistake. The alternative method is to surround the

dead statement with comments, indicating that the statement is dead. The comments imply

the lack of corresponding instructions in the target program, and can include an annotation

explicitly stating that the statement is dead. This approach seems better than the first, as

it is more clear and does not force the user to guess or deduce what has happened to the

dead code.

3.4.5 Splitting apart statements

High-level, powerful source languages often contain single constructs that embody

multiple pieces of functionality. The optimizer may scatter the functionally separate pieces

of such a construct widely throughout the optimized target program. Since the task at

hand requires that the optimized source program accurately reflect the location and order

in which these functional events occur in the target program, it becomes necessary for

the optimized source to split apart these multi-functional constructs. A simple example

should clarify this point. Figure 3.4a shows a common C construct, the for statement.

The for statement header contains three parts: the initialization statements, the loop test,

and the increment statements. In order to allow the modified code enough flexibility to

mirror the order of events in the target program, such a construct needs to be rewritten as

simpler constructs, each embodying a single piece of functionality. Figure 3.4b shows the

same for loop, rewritten as multiple C statements. The modification allows these various

statements to be moved and reordered as necessary in the optimized source code. When

designing a tool to generate optimized source programs for a particular language, one needs

to carefully consider which language constructs will need to be broken down and split apart

in this manner. Ideally whenever such a multifunctional construct needs to be rewritten,

the source language will contain simpler constructs which can be used for this purpose. If



49

that is not the case, pseudocode can be used to represent the pieces of functionality that

need to be separated. Figure 3.4c shows the same for statement split apart and represented

with pseudocode.

for (current = list;
current;
current = current->next) {
...

}
(a) Original Statement

current = list;
while (current) {
...
current = current->next;

}
(b) Using C Constructs

current <-- list;
loopwhile (current) do
...
current <-- current->next;

od
(c) Using Pseudocode

Figure 3.4: Rewriting for statements.

3.5 Solving the Wandering Data Problem

A critical feature of any debugger is its ability to return the value of a variable

in response to a user’s request. However, as explained in Chapter 1, once a program has

been optimized this task becomes complicated by the fact that a single variable’s value may

reside in one of several different locations, including registers, depending on which portion of

the target program is currently executing. In light of this situation, the type of information

generated in symbol tables for unoptimized programs is completely inadequate for optimized

programs. Rather than a single location for each variable, the debugger needs to know the
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whole list of possible locations, as well as which location is valid for that variable for which

portions of the target program. What is really required is a variable range table, such as the

one described by Coutant, Meloy and Ruscetta [16]. The basic idea is to create a table that

indicates for every variable in the program, for every location in which the variable resides,

the range of target code instruction addresses for which the variable resides in that location.

In the Coutant, Meloy and Ruscetta paper, a location could be one of three basic types:

memory address, register, or constant. We have modified this scheme slightly, adding a

fourth type: evicted. A flag in the table for each entry indicates which type of location the

entry represents. The type determines how the data field is to be interpreted. This table

must be created and filled in by the compiler, as only the compiler has access to all the data

necessary. The table is then passed to the debugger, which uses it to find the variables.

3.6 Eviction Recovery

Variable eviction is a widespread phenomena in optimized programs, occurring at

30-60% of all possible breakpoint locations[1]. Since returning a variable’s value in response

to a user request is one of the most basic required core pieces of functionality for a debugger,

a useful debugger of optimized code should have some method for dealing with the variable

eviction problem. The simplest method would be to merely keep track of which variables are

evicted at each location in the target program. In response to a request to see a variable’s

value, if the variable is evicted, the debugger can inform the user that the variable’s value

is not currently available. While relatively easy to implement, this approach is not likely to

be satisfactory. Given the frequency with which eviction occurs, it is probable that a large

number of user requests would receive such a response. Another option is to keep track of

the pieces used to obtain the variable’s value before it got overwritten, and to attempt to

recreate its value from the pieces. There are several problems with this approach. To begin

with, keeping track of all the components of each variable update in the program would

require a huge amount of additional data. Second, even if that data were collected and

passed to the debugger, it is quite possible that one or more of the “pieces” will have been

updated since the evicted variable received its value. In fact it is likely that at least some

of the pieces themselves have been evicted. The sheer volume of information required by

this approach makes it impractical. A third approach is to make a copy the variable’s value

before it gets overwritten. This copy could then be returned in response to user requests.
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This last approach is the one we take. However even this approach has some problems.

In order to make a copy of the variable’s value before it is overwritten, execution

of the target program must be suspended prior to the eviction and control given to the

debugger. This requirement in turn means that the debugger must set breakpoints on all

instructions that evict variables. Furthermore these are not user-specified breakpoints; since

the debugger does not pass control to the user at these positions (unless such a breakpoint

happens to coincide with a breakpoint set by the user), they are hidden breakpoints. The

user is not supposed to know that they exist. There is a problem with introducing hidden

breakpoints. Recall that one of the desirable characteristics of a solution for debugging

optimized code is that the debugger be non-invasive, not altering the target program (except

to implement user-requested breakpoints). Every time a hidden breakpoint is reached, the

computer must switch contexts and give control to the debugger, which will collect the

appropriate value and return control to the computer, which then resumes executing the

target program. Given the high frequency of variable eviction, using hidden breakpoints to

save the value of every variable that is about to become evicted will have a highly visible,

negative impact on the running time of the program. Thus there is a conflict between

needing the ability to present evicted variables’ values to the user, and keeping the impact

on the execution speed of the target program to a minimum. We have not been able

to find an optimal resolution for this conflict, so we have settled for what seems to be a

reasonable compromise: The debugger will use hidden breakpoints to copy the values of

evicted variables, but only in those subroutines where the user has set a breakpoint. Thus,

while the running time for those subroutines will be adversely affected by the eviction

recovery scheme, the rest of the program will not. Since, by choosing to set a breakpoint in

the subroutine, the user has already indicated a willingness to slow down (stop) execution

time within the subroutine, this tradeoff seems fair.

The benefits of this approach are that, whenever execution of the target program

stops at a user-specified control breakpoint, the values of all variables within that subrou-

tine’s scope will be available for the user to examine. The values of any arguments to any

functions on the call stack will also be available for examination, as they must be live (they

were used in the function call), and live variables cannot be evicted. By limiting eviction

recovery to subroutines where the user has set breakpoints, the impact of eviction recovery

on program run time is minimized.

Obviously this approach also has some limitations. Target program execution
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can be suspended for reasons other than a user-specified control breakpoint (for example,

a data breakpoint, a user interrupt, or a fault). In cases where execution is halted for

some other reason, eviction recovery may not have been performed, so variables within the

current subroutine may or may not be available (depending on whether there happens to

be a user-specified control breakpoint somewhere within the subroutine or not). Another

problem is that, when moving up or down the call stack, variables that are not arguments

to the function calls may or may not be available. Similar problems also exist for debugging

core dumps (post-mortem debugging). Furthermore execution time will be affected in those

subroutines where eviction recovery is being performed.

3.7 User Interface Options and Issues

Given the fact the user is being presented with a fair amount of new data, and

given the underlying necessity of not confusing the user or placing an undue burden of

optimization understanding on her, the user interface is critical.

To begin with it is vital that the user be able to relate any position or statement

in the optimized source back to the corresponding statement in the original source. A

graphical interface can greatly facilitate this task by displaying both versions of the source,

and allowing the user to select any statement in either version. Once a statement has

been selected the interface can display the corresponding statement(s) in the other version.

Thus if the user, looking at the optimized code, cannot find a particular statement that is

known to be in the original source, the user can go directly to the original source, select

the statement in question, and have the corresponding statement(s) in the optimized source

displayed for her. Similarly if the user is looking at a particular statement in the optimized

source and cannot figure out where it came from, she can select it, and the corresponding

original source statement(s) will be displayed.

This scheme works well if one is only dealing with optimizations that do not

drastically alter the appearance of the source program. Optimizations such as function

call inlining and high-level loop nest optimizations, however, would require making major

changes to the appearance of the source program in order to make their effects explicit.

Thus a graphical user interface will need to do more work to keep the user from being

overwhelmed by the differences between the optimized and the original source programs,

once such optimizations have been applied.
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One preliminary design for helping with the effects of function call inlining involves

generating two pieces of optimized source for the call site. One piece, the default, would

be similar to the original source program (modulo other optimization effects), i.e. it would

show the function call as if it had not been inlined. Beside the function call there would

be a flag or icon indicating that this default optimized source is not completely accurate.

The user would have the option of requesting to see the fully optimized source. Selecting

this option could cause another window to pop up displaying the full effects of the function

call inlining. The user could make this pop up window go away again, if desired. Within

this new window the user could perform standard debugging activities with respect to the

fully optimized source, such as single-stepping or setting breakpoints. When looking at

the default optimized source, attempting to single-step into the inlined function call would

cause the fully optimized source to appear. The inlined function call would appear on the

call stack, but would be annotated as “inlined”.

The advantage of an approach like this one is that the default view of the optimized

source remains very similar to the original source, which in turn minimizes the difficulty

users will have in recognizing and understanding it. At the same time, in those instances

where the user needs a truly accurate picture of the effects of function call inlining, they are

available to be seen. Even in the default view, though, some effects of function call inlining

may need to be represented. For example the inlining may enable certain optimizations such

as constant folding or common subexpression elimination to cross the boundaries between

the call site and the inlined function. The effects of such cross-boundary optimizations must

be faithfully represented in the default code surrounding the call site, as it is critical that

the user have an accurate picture at all times of what values get assigned to which variables.

Using dual versions of the optimized source as advocated in the previous paragraph

addresses the most critical problem for displaying the effects of function call inlining, namely

allowing the user to have accurate information about the optimizations performed while not

overwhelming her by drastic changes to the source program. However this approach also

raises some difficult technical questions. Some of these questions include how to store and

access two separate versions of the optimized source; how to assign source line numbers to

both versions of the source and to report those line numbers to the symbol table for the

debugger; how to assign the corresponding source positions to the instructions in the target

program; and how to divide the work of using dual versions of the optimized source between

the graphical user interface and the debugger.
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With regards to storing and accessing the two separate versions of the optimized

source, it might be possible to store them both sequentially in the same source file. There

could be special delimiters added to the file to separate the two versions. The user interface

would then use these delimiters when reading in the source file and display the appropriate

pieces of code in the appropriate windows. Assigning line numbers to the two versions

of the optimized source is somewhat tricky, as the line numbers for unique lines in each

version should be distinct and yet should somehow all fit logically within the line numbers

assigned to code surrounding the call site. Statements that occur in both versions of the

optimized source should have the same line number in both. Perhaps in the default view

the function call itself could be given a range of line numbers, representing the line numbers

in the fully inlined version. The source positions assigned to the instructions in the target

program should correspond to those in the fully optimized version of the source. The user

interface will have to keep track of which version the user wants to display, and will have

to parse the optimized source file to find and separate the dual versions of the optimized

source. The debugger will also have to keep track of which view the user has of the source,

for performing tasks such as displaying stack traces. The debugger will further need to

implement some scheme for stepping over the inlined function call in the default view.

High-level loop nest optimizations cause the same types of problems as function

call inlining. Thus a similar solution, namely dual versions of the optimized source might

be an adequate approach. If users really want to see all the details of the optimizations,

they can step through the fully optimized view of the loop. If the user is uninterested in the

optimizations performed on the loop, the user can use the default view of the loop (which

will look very similar to the original source for the loop) and skip over the loop. The worst

difficulties arise if the user attempts to single step through the default view of the loop. At

this point there are several possibilities. The debugger could insist that if the user wants

to single step through the loop the user must use the fully optimized source. Alternatively

the user would have the option of stepping over the entire loop, treating the whole thing

as one giant statement. If the debugger allows the user to step through the default view

of the loop, the user could be warned that the information given when within the loop will

be inaccurate, and the debugger could attempt to give the user clues such as “updating

induction variable”, “executing first, third, and fifth iterations of the loop”, “modifying

array elements 3, 8, and 11”, etc. This is all very preliminary.

Once one starts considering using multiple versions of the optimized source to
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help users understand and deal with optimizations, an attractive idea is that of allowing

the user interface itself to transform the original source to the optimized source in a series

of layers or steps. The user might be given control over applying or removing any particular

optimization. Thus by “stepping” through the various stages or layers of the transformation,

the user could gain a better understanding of the optimized source and how it relates to

the original. The greatest flaw with this idea is that, because the user is in control of which

optimizations do or do not get applied, the resulting optimized source may not present a very

accurate picture of the optimizations performed by the compiler, and it may correspond very

poorly to both the target program and to the information in the symbol table. Therefore

this idea does not seem practical for a debugger. However it might be useful as a secondary

tool designed to teach people about optimizations or to help them understand the optimized

source that is generated by Optview. For such a tool one would not need to be concerned

about maintaining correspondences with the symbol table or with the target program.

3.8 Summary

In this chapter we have presented a theoretical overview of our solution to the

problem of debugging optimized code. We have explained what we mean by “optimized

source” and have discussed in detail the theoretical issues involved in generating optimized

source. The concept of key instructions has been introduced and we have shown how they

can be used to solve multiple problems. We have explained the use of variable range tables to

solve the wandering data problem, and we have presented a practical scheme for performing

eviction recovery in the debugger. Finally we have discussed the various options available

for a user interface for our solution and shown how they can minimize user confusion with

this approach.
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Chapter 4

Optview and Optdbx

The theoretical solutions outlined in the previous chapter have great potential for

easing the task of debugging optimized code and for allowing simple, practical solutions to

the problems in this area. A critical component of this solution, however, is the ability of

users to recognize, understand, and use the optimized source. The only way to determine

conclusively whether users can or cannot understand the optimized source is to generate

such source and show it to them. Therefore we have implemented the solutions described

in Chapter 3, and have distributed our implementation to a set of users. In this chapter

we describe the details of our implementation, as well as problems encountered during the

implementation process.

4.1 Overview

There are three basic components to our implementation: the compiler, Optview,

and Optdbx. Optview is the prototype tool we have written to generate optimized source

code for C programs. In our implementation we chose to embed Optview within the com-

piler, although it is not really necessary to do so. Optview could have been written as an

entirely separate tool, at the cost of the compiler having to write out information that it

currently passes directly to Optview. The compiler that we modified is the MIPS Pro 7.2

C compiler, an aggressively optimizing commercial compiler developed by Silicon Graphics,

Incorporated (SGI). In addition to collecting data for and invoking Optview, the compiler

was modified to gather and generate the extra symbol table information necessary for ac-

curate debugging of optimized programs. Optdbx is a debugger that uses optimized source
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for debugging. It consists of a graphical user interface, written in Python 1.5.1, which uses

Tk/Tcl 8.0.4, and a modified version of the SGI 7.2 Dbx debugger. Optview and Optdbx

were developed on an SGI MIPS R4000 processor, running IRIX 6.2 (a version of Unix).

4.2 Optview Overview
            

Figure 4.1: How Optview relates to the rest of the compiler

Figure 4.1 gives a high-level overview of how Optview fits into the compiler. The

solid black lines indicate pieces of the original compiler, and the dotted black lines indicate

pieces added for Optview. A source program is passed into the front end of the compiler,

which, in addition to its standard syntactic and semantic analyses, collects parsing infor-

mation about C language constructs that may later need to be rewritten or split apart. In
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particular it collects information about the location of increment and decrement operators

(++/--), loops (for, while, and do-while), conditional expressions, function start and end

positions, and declarations. This collected information is written to a temporary file, the

Front End Information File. The front end of the compiler then passes its internal repre-

sentation of the program to the back end of the compiler. High-level loop optimizations

have not yet been implemented in Optview, so the back end currently skips over the loop

nest optimization phase and proceeds to the global optimization phase. This stage is where

a large number of the optimizations important to Optview are performed. The global opti-

mizer, in addition to performing its usual optimizations, collects data Optview needs about

the optimizations as it is performing them. This information is written to another tempo-

rary file, the Back End Information File, as a chronological log of the actions performed

by the compiler. The optimized internal representation of the program is then passed to

the code generator, which proceeds with lowering the internal representation and perform-

ing such optimizations as register allocation and assignment, and instruction scheduling.

Immediately prior to emitting the optimized assembly or target program, the code gener-

ator invokes Optview. Optview takes a copy of the original source program, the front end

information file, the back end information file, and the final internal representation of the

program, and from these pieces Optview generates the optimized source program. It does

so by starting with a copy of the original source program and performing a series of rewrites

or forward transformations on the source. All of these transformations take place at the

source level. Optview relies on the back end information file to determine exactly how to

transform the source. In the process of generating the optimized source program, Optview

identifies all the pieces of the internal representation that represent key instructions. Doing

so is necessary, as Optview uses the order of the key instructions to determine the correct

order for source statements in the optimized source. After Optview finishes generating the

optimized source, it is written out to a file. The code generator then proceeds to emit the

optimized binary or assembly program.

Given that the goal of Optview is to produce a source program that accurately

reflects what is occurring in the binary, a reasonable alternative approach might have been

to use reverse engineering techniques to obtain the optimized source directly from the op-

timized binary. Optview does not take this approach for several reasons. The optimized

source must meet two critical conflicting goals. It must reflect the optimized binary program

accurately enough to allow a relatively simple mapping between itself and the binary, yet
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at the same time it must remain recognizable and understandable to anyone familiar with

the original source program. If the users cannot recognize and understand the optimized

source, then the system is useless. Although reverse engineering would meet the first condi-

tion admirably, accurately reflecting the binary, it would fail to meet the second. In reverse

engineering one starts with a very low-level representation of the program. Thus, for ex-

ample, all higher level control flow constructs, such as conditionals and looping statements

have been converted to goto’s. Also, non-executable portions of the original source program

such as white space and comments are not present in the program representation. They

have been lost. The loss of high level control flow constructs and of comments and white

space makes the resulting program much harder for the user to recognize. To further com-

plicate the matter, a reverse engineered program must reflect all optimizations performed

by the compiler, as the binary from which it starts contains all the optimizations. By start-

ing with the original source program and performing a series of transformations on that

program, Optview has the option of picking and choosing which optimizations to reflect in

the optimized source. It also is able to retain and use many pieces of the original program,

including high-level control flow constructs and comments. The net result is that programs

generated by Optview bear a much closer resemblance to the original source program than

programs reverse engineered from binaries.

4.2.1 Selecting Optimizations to be Made Explicit

In order to prevent the optimized source from becoming completely unrecognizable,

one must carefully select the optimizations whose effects are to be reflected in the optimized

source. As mentioned previously this selection is not in any way limiting the optimizations

the compiler will perform; it will continue to execute its full range of optimizations on the

program. We are only selecting which optimizations need to have their effects reflected in the

optimized source. The optimizations we chose to reflect in Optview are copy propagation,

constant folding, common subexpression elimination, partial redundancy elimination, dead

code elimination, code motion (hoisting and sinking), and instruction scheduling (at a

coarse granularity)1. These optimizations were selected as having the most impact on the
1When we say Optview reflects instruction scheduling at a coarse granularity, we mean it reflects the

instruction scheduling performed on key instructions, ignoring scheduling performed on the other instruc-
tions. The reason for doing so is that each source statement can have multiple corresponding instructions
in the target program. After instruction scheduling the instructions for any given source statement may
be interleaved with instructions from several other source statements. Also a single instruction may be
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ability of the debugger to map statement locations and data between the source and target

programs. Our original list also included function call inlining and loop nest optimizations,

as these also have a large impact on debugging. We intended to incorporate inlining and

loop nest optimizations into Optview in a second phase of implementations, as these two

optimizations would cause more drastic changes in the appearance of the optimized source,

and would therefore require a more complicated user interface for displaying their effects to

the user. At this time we have not had the opportunity to add these two optimizations to

Optview.

4.2.2 Optview Details

In this section we first give a brief overview of the stages Optview goes through

when transforming a source program into optimized source. We then proceed to describe

each stage more fully.

Optview transforms the original source program into optimized source in a series

of eight distinct steps. Figure 4.2 illustrates these steps.

Step One. In the first step, Optview reads in the original source file and stores

the text and some additional information for each source line in an array, one entry per

source line. Each source line is labelled as being white space, a comment, a declaration, a

pre-processor directive, or executable code.

Step Two. Once the original program has been read, Optview rewrites all of

the “multifunctional” C constructs used in the program (for loop headers, conditional

expressions, increment or decrement operators that are embedded within other statements,

and initialized declarations) in terms of simpler constructs that can then be separated and

moved around more freely in the optimized source. Optview uses the data file that was

created earlier by the front end of the compiler to locate the appropriate constructs in the

source (recall that Optview is not invoked until the very end of the compilation process,

immediately prior to the target program being emitted).

Step Three. The next step is to determine the new order in which statements

should appear in the optimized source. The new order is determined from the order of in-

structions in the target code as follows. For each source statement that has corresponding

instructions in the target program, a key instruction is identified. Once every source state-

attributable to multiple source statements. It is therefore impossible to accurately reflect the total ordering
of instructions at the source level.
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Rewrite semantics of dependent reordered
statements

Rewrite multifunctional source constructs

Read in source & tag all statements

Determine correct order for statements
in optimized source

Make PRE and CSE explicit

Reorder statements

Eliminate dead code

Add CPP & annotations

Original
Program

Optimized
Source

Program

Figure 4.2: The stages of Optview
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ment has a key instruction associated with it, the execution order of these key instructions

in the target code becomes the new order for the source statements in the optimized source

code.

Step Four. After the new order for the source statements has been determined,

Optview goes through the source and updates those statements whose semantics need to

be updated due to the reordering.2 Optview makes use of an existing tool within the SGI

compiler to perform the semantic rewrites.

Step Five. Once these source statements have been rewritten, Optview uses the

data file written by the back end of the compiler to make partial redundancy elimination

and common subexpression elimination transformations explicit in the source code.

Step Six. The next step is to use the statement order obtained in step three and

rearrange the optimized source statements to match this order.

Step Seven. This step adds dead code elimination information to the optimized

source. Any source line in the original program which contains executable code, and which

does not have any associated instructions in the target code is determined to be dead code

that was eliminated, and is indicated as such by being commented out.

Step Eight. After dead code elimination, Optview makes a final pass over the

optimized source code and annotates statements at which copy propagation, common subex-

pression elimination, or constant folding occurred. Once the program has been annotated,

the optimized source is complete.

Rewriting Multi-functional Constructs

An important aspect of the optimized source is that it accurately reflects the order

in which events occur in the binary, particularly with respect to the order in which variables

are updated.3 It is critical that the optimized source be completely accurate with respect to

variable updates, as the removal of out-of-order variable assignments (the currency problem)

is one of the major benefits of this approach to debugging optimized code.
2Sometimes the optimizer reorders assignment statements that are dependent on each other. Such re-

ordering occurs most often when one of the statements increments or decrements a variable by a constant
amount. In such cases, the optimizer determines that semantic equivalence can be preserved by adding
or subtracting a constant value to one of the reordered statements. As these two statements will also be
reordered in the optimized source, the appropriate source statement needs to be updated to add or subtract
the appropriate constant as well.

3“Events” that can occur in the binary include updating variable values, testing predicate values, taking
control flow branches, and calling subroutines.
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C, in common with many high-level programming languages, contains multifunc-

tional language constructs that allow multiple variable assignments to be represented within

a single statement. The optimizer may choose to separate and scatter the corresponding

assignments in the target program. Therefore the optimized source needs the ability to rep-

resent each variable assignment separately. Therefore Optview replaces constructs allowing

multiple variable assignments with simpler constructs, resulting in at most a single variable

assignment per statement in the optimized source.

We identified three source language constructs in C which inherently allow multiple

assignments per statement and that need to be split apart or rewritten: for statements, con-

ditional expressions, and increment/decrement operators (++/--) embedded within other

statements. We also discovered a need to rewrite initialized declarations, in order to cor-

rectly place the initialization assignment within the source.

Recall that the front end of the compiler writes a data file used by Optview to iden-

tify the source locations of the constructs that may need to be rewritten. As the optimized

source is generated, those lines are parsed to find and update the text that needs to be rewrit-

ten or moved. We take advantage of the fact that the input must be syntactically correct at

this stage. This fact allows us to use a relatively simple parsing strategy. Optview rewrites

those constructs that need rewriting, using simpler C constructs, as shown in Figure 4.3.

For statements are rewritten as while loops, with the loop initializations before the loop,

and the loop increments inserted at the end of the loop body. Assignment statements that

have conditional expressions on the right hand side are rewritten as if-then-else state-

ments. Increment and decrement operators that are embedded within other statements are

pulled out of the statements in question and written as separate statements, either before

or after the containing statements, as appropriate. Finally, initialization assignments are

removed from variable declarations and inserted just prior to the next executable state-

ment. These changes permit much greater flexibility for rearranging and modifying these

assignments as needed to reflect the optimizations.

In writing Optview we made the simplifying assumption that the original source

program has at most one statement per source line. Source programs that do not meet

this requirement can be run through a simple pretty-printing processor for Optview. This

assumption was made initially to allow the use of a relatively simple parsing scheme within

Optview. Optview does not contain a full-fledged parser or lexical analyzer. At first it

did not seem necessary to incorporate one into Optview. In retrospect we realized that
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Original Source Code Modified Source Code

(a) for statements

i = 0;
for (i = 0; i < max; i++) { while (i < max) {
... ...

} i++;
}

(b) conditional expressions

if (i > j)
max = (i > j) ? i : j; max = i;

else
max = j;

(c) increment/decrement operators

--j;
A[i++] = B[--j]; A[i] = B[j];

i++;

(d) initialized declarations

int found = 0; int found;
int result = 1; int result;

... found = 0;
result = 1;
...

Figure 4.3: Rewriting Multi-Functional C Constructs
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Optview probably should have had one, but by that point adding one would have meant

making massive changes to the system. Based on our experiences we recommend that any

other tools attempting to generate optimized source start with a correct, complete parser

and lexical analyzer for the source language.

The one language construct that Optview probably should rewrite and which it

currently does not is the statement of the form “a = b = c”. This type of statement was

accidentally overlooked in our initial implementation. Making Optview find and rewrite

statements of this type should be relatively simple and is on the current list of fixes and

enhancements planned for Optview.

Rewriting Reordered Code

During the optimization process the compiler changes the order in which source

statements may execute pretty freely. Changing the order of source statements is not a

problem if the statements that are reordered are independent of one another. However

sometimes the compiler chooses to reorder dependent statements. When it does so the

compiler must also update the calculations performed by these statements in order to pre-

serve the original semantics of the program. Recall the example of this problem shown in

Figure 3.3, reproduced here as Figure 4.4.

Figure 4.4a shows a small fragment of code. The second statement in this fragment

assigns a value to i. This value depends on the variable num, which is updated in the third

statement. During the optimization process, the compiler chose to reorder the second and

third statements. Now num gets incremented before it is used in the assignment to i. As

indicated in the comments in Figure 4.4b, reordering the statements without making any

other changes results in the variable i receiving a different value than in the original program.

To correct for this difference, the right-hand side of the assignment to i needs to be updated

to take into account the new statement order. In this case, the constant value needs to be

changed from seventeen to twenty, as shown in Figure 4.4c.

The compiler of course performs the appropriate transformations internally when

it rearranges the statements. However Optview also needs to reflect these changes in the

optimized source. Merely rearranging the source statements will cause the resulting program

to appear to be calculating the wrong values, and will moreover completely mislead the

programmer, as it will not accurately reflect the values being calculated by the executing
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(a) Original Code

num = y; /* num == y */
i = 3 * num - 17; /* i == 3 * y - 17 */
num++; /* num == y + 1 */

(b) After Reordering (Wrong)

num = y; /* num == y */
num++; /* num == y + 1 */
i = 3 * num - 17; /* i == 3 * (y + 1) - 17 */

/* == 3 * y - 14 */

(c) Reordered & Updated (Correct)

num = y; /* num == y */
num++; /* num == y + 1 */
i = 3 * num - 20; /* i == 3 * y - 17 */

Figure 4.4: Reordering & Updating Code

target program.

In order to modify the source program appropriately after reordering the state-

ments, Optview uses an existing tool within the SGI compiler. This tool takes fragments

of internal representation and translates them into C code. Therefore for each statement

that will need to have its right-hand side rewritten in the manner described above, Optview

finds the piece of optimized internal representation generated by the compiler that corre-

sponds to the right-hand side of the statement. Optview then passes this piece of internal

representation through the compiler tool, which returns the corresponding fragment of C

code. Optview then inserts the new C code into the right hand side of the statement in

the optimized source. Since the intermediate representation from which this fragment was

generated has already been optimized by the compiler, which correctly transformed the

program when it rearranged the statements, the result is correctly updated source.

One of the side effects of rewriting these statements in this manner is that the

results of constant folding are made apparent in the optimized source without any special

effort on the part of Optview to identify where the compiler performed this optimization.



67

Original Source Code Modified Source Code

cse_var_1 = 2 * y;
cse_var_2 = cse_var_1 + 3;

c = 2 * y + 3; c = cse_var_2;
a = 5 + 2 * y; a = 5 + cse_var_1;
b = (4 + 2 * y - 1) / z; b = cse_var_2 / z;

Figure 4.5: CSE in Optview

Collecting Optimization Information

To accurately reflect the effects of optimizations such as common subexpression

elimination (CSE), partial redundancy elimination (PRE), and copy propagation, Optview

needs to know precisely what the compiler did and precisely where it did it. We modified the

compiler to collect information about these optimizations as it is performing them and to

write this information to a file which Optview later uses to reflect these optimizations in the

modified source code. The information Optview requires includes the location where assign-

ment statements are inserted; the left- and right-hand sides of these assignment statements;

the location of source statements requiring substitutions; which assignment statement is

relevant for each substitution; and which expressions were propagated to which statements.

Optview must also determine whether the expressions involved in these optimizations came

from the original source program (as opposed to being introduced during the compilation

process), since only optimized source expressions are shown.

Optview reads the information file generated by the optimizer to obtain all the

necessary information about the optimizations performed. It then modifies the source code

to make the effects of CSE and PRE explicit, as shown in Figures 4.5 and 4.6. First it

inserts a new assignment statement into the source, assigning the “common” expression to

a new temporary variable. Next it replaces the relevant expression or subexpression in the

appropriate statements with the new temporary variable. Although these new variables

are not part of the original program, our expectation is that, if properly annotated and

documented, they will not be too confusing to the user.
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In addition to collecting information about where common subexpression elimina-

tion and partial redundancy elimination occur in the compiler, we modified the compiler to

assign new unique “source positions” to the pieces of internal representation that calculate

the subexpressions and assign them to compiler temporary variables. These intermediate

representations correspond to the new assignment statements that will be inserted into the

optimized source. The new unique “source positions” given to these pieces in the global

optimizer are then propagated through the rest of the compiler. Thus in the final internal

representation of the program, the instructions that correspond to these new statements

are clearly indicated, which allows us to know exactly where to insert the new assignment

statements in the optimized source.

One difficulty we encountered when implementing this part of Optview is that the

common subexpressions generated by the compiler are in a canonicalized form, whereas the

subexpression in the source statement where the substitution is to be performed may not

be. Since we use syntactic comparisons to perform the substitutions, it is hard sometimes

to find the subexpression to be replaced. The solution we used is to pass the intermediate

representation for the original source statement through a tool that outputs the text in

the same canonical form as that used by the compiler.4 Once both the source text and

the compiler optimization data are in canonical form, the substitution becomes relatively

simple.

Another small problem we have found is that the compiler is very free in its use

of the intermediate compiler temporary variables, and sometimes assigns values to them

where it is unnecessary. For example the compiler sometimes performs assignments of the

form

cse_var_3 = foo;

where foo is a simple variable. The compiler probably performs this type of assignment on

the assumption that doing so will enable later potential optimizations. However sometimes

nothing further is done with the compiler temporary, other than to replace all occurrences

of foo with it. Optview currently treats such instances like any other occurrences of common

subexpression elimination, inserting the assignment into the optimized source and perform-

ing all the corresponding substitutions. In the future we hope to make Optview check for

these non-helpful types of substitution, and to eliminate them from the optimized source.
4This tool is the one mentioned earlier that translates pieces of internal representation to C.
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Original Source Code Modified Source Code

if (...) { if (...) {
a = x; a = x;
y = a + b; cse_var_1 = a + b;

y = cse_var_1;
} else { } else {
a = y; a = y;

cse_var_1 = a + b;
} }
z = a + b; z = cse_var_1;

Figure 4.6: PRE in Optview

Reordering the Optimized Source

A critical aspect of the optimized source is that it accurately reflects the order in

which events occur in the binary. Thus the order of statements in the optimized source

is driven by the final internal representation of the program (which has a one-to-one cor-

respondence with the instructions generated for the target program). Optview determines

the order of “statements” in this final program representation in several stages. Initially

Optview identifies all the key instructions that occur in the program representation, and

consolidates basic blocks into superblocks wherever possible.

Optview constructs its own representation of the program by traversing the com-

piler’s internal representation in execution order. It begins by constructing “path segments”

which correspond to superblocks, i.e. sequences of basic blocks that have only a single prede-

cessor or a single successor. Back-edges (looping edges) are not added to the representation,

although Optview does annotate the path segments corresponding to the top and bottom

of each loop. Enough data is maintained to accurately represent the control flow of the

program, even if the control flow is not properly nested.

While traversing the compiler’s representation of the program, Optview takes note

of the source positions attached to each instruction. Optview makes a list of all such source

locations found in the internal representation. These are the statements that will be “live”

in the optimized source, and for which Optview must identify the key instructions, in order
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to correctly reorder the source statements. Initially Optview records the source positions

in a list, along with whether or not a key instruction for the corresponding statement has

been found. Assignment statements already have their key instructions marked by this

point, as the tag for key instructions for assignment statements has been passed through

the compiler from earlier stages. Source positions in the list for which key instructions have

not been found will be marked with information about the path segments in which the

corresponding instructions occurred. The first branching instruction (if any) for a source

statement is marked as its key instruction as soon as Optview encounters it. Similarly

instructions that jump to other functions (function calls) are tagged as key as soon as they

are encountered.

Once Optview has finished constructing the path segments, and has recorded all

the source statements for which there are instructions, Optview goes back through the list

of statements to see if any of them still do not have key instructions. If there are any such

statements, Optview goes to each superblock that contains instructions for the statement

and marks the last instruction for that statement in the superblock as the key instruction

for the statement.

Now that the key instructions for all the source statements have been marked,

Optview records, for each path segment, which source statements have key instructions in

the segment, and what the order of the source statements (key instructions) is for each path

segment.

Next Optview constructs a DAG (Directed Acyclic Graph) that corresponds to

the internal representation of the program. The nodes of the graph are the path segments

that Optview previously constructed. The edges of the dag are the forward branching edges

of the internal representation. Back-edges (looping edges) are not represented as edges in

Optview’s graph, as the graph is supposed to be acyclic. Instead looping information is

recorded as follows. Given a back edge E from node n to node m, node n is annotated with

information indicating it is the bottom of a loop whose top is node m. Node m is annotated

as the top of a loop. A counter in node m is also incremented to keep track of the number

of loops for which it is the top (a single node may be the top of multiple loops).

At this stage the basic DAG Optview has constructed accurately mirrors the con-

trol flow of the optimized target program. Each node in the DAG contains a list, in order,

of the source statements whose key instructions occur in the corresponding portion of the

target program. Therefore Optview could use this DAG directly to determine the order
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in which statements should occur in the optimized source. However certain optimizations

such as loop unrolling duplicate source statements or sequences of source statements. Using

the DAG at this point would cause those duplications to all be reflected in the optimized

source, making it more difficult for users to recognize and understand. In some cases where

the duplicated ordering of key instructions is identical, it may be possible to hide the dupli-

cation from the user by making all the duplicate sequences of key instructions in the target

program correspond to a single sequence of statements in the optimized source. Thus it is

desirable to undo some of these duplications in the DAG, wherever possible, before gener-

ating the optimized source. For these purposes Optview performs a series of optimizations

on the DAG to reduce and consolidate it as much as possible. There are five optimizations

that Optview performs on the DAG. The simplest optimization is to go through the DAG

and remove any nodes that have no source statements associated with them (empty nodes).

Optview actually does this optimization at three different times, as some of the other opti-

mizations cause new empty nodes to appear in the graph. The next simplest optimization

is to find nodes that contain only a single statement, and all of whose predecessor nodes

end with the same statement. In that case the single-statement node is merged with each

of its predecessors. The other three optimizations are slightly more complicated.

The first of these more complicated optimizations looks for two nodes, one a direct

successor of the other, that contain exactly the same statements in exactly the same order.

If these two nodes also have exactly the same predecessors (other than themselves), they

are merged into a single node. This particular optimization was introduced to “undo”

loop unrolling, which usually leaves two versions of the loop, one that represents the loop

unrolled some number of times, and the other to “clean up” any left over iterations. As these

two versions of the loop usually execute exactly the same statements in exactly the same

order, they can be represented as a single loop in the optimized source, thus eliminating

one possible source of user confusion.

The last two DAG optimizations involve merging loop nodes where a single back-

edge (looping edge) has been split into two separate edges. It is necessary to find and merge

such split back-edges in order to avoid introducing new goto statements into the optimized

source, which would make it much harder to understand. Examples of these two types of

optimizations are shown in Figure 4.7 and 4.8. The graph in Figure 4.7a shows two nodes,

b and c, on different paths of a conditional both looping back to the same position. Since

the branch statement in each of these nodes is by definition always the last statement in
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the node, this situation is easily remedied by inserting a new node, e, as a successor to

both paths of the conditional (and a predecessor to all their original successors). The loop

statement is moved out of b and c into the new node, e, thus consolidating the looping

statement into a single node.

Figure 4.8 shows a slight variation on the same theme. There are two nodes on

the same path, one a successor of the other, both looping back to the same position. From

either node the only place to go is either to the top of the loop or to the other node. Again

the solution is to introduce a new node into the graph, to which both looping nodes point,

and to move the looping statement out of each of the old nodes and into the new node.

As mentioned previously, the purpose of performing all of the optimizations and

graph reductions is to reduce as much as possible any redundancy of source statements in

the graph, and to reduce or eliminate the need for introducing goto statements into the

source. Ideally each original source statement will occur exactly once in the final graph, as

this situation will have the most direct, easiest to understand mapping back to the original

source. In those cases where a source statement does occur multiple times in the final

Optview DAG, the source statement is duplicated in the optimized source.

After the graph is complete Optview traverses the graph and finds the post-

dominator node (if one exists) for every node that has multiple successors. At this point

Optview has a completely accurate picture of which source statements should occur in which

order. The next step is to express this order in a linear manner (rather than as a graph),

since C programs are written linearly. Optview traverses its DAG representation of the

optimized program and constructs a linear final ordering of the source statements for the

optimized source. It then uses this linear ordering to rearrange statements from the original

program in order to obtain the optimized source.

Copy Propagation and Dead Code Elimination

Optview handles copy propagation (CPP) differently from the other optimizations.

Copy propagation is an optimization that enables CSE and other optimizations[41]. Thus

the compiler applies copy propagation before applying many other optimizations. However

the effects of copy propagation are often transitory, as a later optimization that was enabled

by copy propagation may completely overwrite or eliminate the propagated expressions. Our

solution to this problem has two parts. First Optview keeps track (via the data gathered
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Figure 4.7: Merging split loop nodes
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Figure 4.8: More merging split loop nodes
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by the compiler) of every source statement to which an expression was propagated, as

well as the exact propagated expression. After all of the other optimization effects have

been reflected in the modified source code, Optview goes through and checks each resulting

source line to which an expression was propagated. A comment is added to the end of each

line stating that copy propagation occurred there. If the original variable still exists in the

source statement, Optview replaces it with the propagated expression.

The final stage that Optview goes through is finding and marking dead code in

the optimized source. Optview starts with a list of statements that the global optimizer

thinks it may have eliminated. Optview removes from this list any statement for which

instructions were generated in the final representation of the program, since any statement

for which there are instructions cannot be dead. One might expect that such a step would

be redundant, as it seems logical that if the optimizer eliminated a statement, there could

not be any instructions generated from that statement. The key to understanding this

apparent contradiction lies in the following two facts. 1). Every time the global optimizer

determines that a particular piece of the internal representation is dead, it eliminates that

piece of code, and records the source position for the statement corresponding to the internal

representation that is eliminated. This generates the list from which Optview starts. 2).

During the course of the optimization process, a source statement or pieces of the statement,

may be duplicated, perhaps several times. It is possible that some of the duplicated pieces

are later removed during dead code elimination, but others are not. Because of these two

circumstances it is possible for a source statement both to be on the list of statements the

global optimizer eliminated and to generate instructions that appear in the final internal

representation of the program.

Once Optview has removed from the “dead list” any statement for which instruc-

tions were generated in the final representation of the program, it goes through the remain-

ing list. For each statement on the list Optview finds the corresponding statement in the

optimized source, surrounds the statement with comments, and adds a note indicating that

the statement is dead. We decided to take this approach rather than actually removing

the statements from the optimized source, as we thought our approach would lead to less

confusion. If the dead statements were actually removed from the source the user may be

left wondering what happened to the code, or think that it was moved to some other part

of the program. By commenting out the code it becomes obvious that the code will not

execute, and that it has not been moved or accidentally left out.
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4.3 Other Compiler Modifications

In addition to modifying the compiler to collect data for Optview and to invoke

Optview at the appropriate time, we needed to make a few other modifications to the

compiler. In particular we modified it to create and propagate key instruction tags for

assignment statements; to collect data about the locations of variables during program

execution; and to output this information to the symbol table.

4.3.1 Key Instructions

As described in the last section, Optview uses key instructions to determine the

correct order for statements in the optimized source. For most statement types, the key

instruction for the statement can be identified by knowing the statement type and examin-

ing the instructions generated for that statement. This property is not true for assignment

statements. Instructions make no mention of variable names, and the “store” instructions

may be optimized away altogether, leaving operator instructions whose destination register

becomes the store location. With no mention of variable names and no knowledge of what

the opcode for the store instruction may be, one needs further clues to pick out the key

instruction for assignment statements. In our implementation we allow the compiler to help

us with this task. We modified the front end of the compiler to tag, for each assignment

statement in the source program, the intermediate representation statement that stores

the value. As the intermediate representation goes through various optimizations, trans-

formations, and lowering stages, this tag is tracked and updated appropriately, and passed

through the compiler. Therefore when the final internal representation of the program is

constructed, the key instructions for assignment statements are already tagged as such.

While implementing the stepping and breaking functions in the debugger, we came

across an interesting problem related to key instructions in delay slots. In optimized code it

sometimes happens that a key instruction for one source statement will be scheduled in the

delay slot for another source statement. Such occurrences cause problems when attempting

to set a breakpoint on the statement whose key instruction is in the delay slot. In the

MIPS processor, delay slot instructions can never be executed separately from their branch

instruction, thus execution can never halt on a delay slot instruction. Since key instructions

indicate where breakpoints for source statements are supposed to be set, the result in our

initial implementation was that breakpoints for statements with delay slot key instructions
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were never reached. They appeared to be skipped over.

Our solution to this problem is to make the branch instruction itself the key

instruction for the delay slot statement. In those situations where the branch instruction is

also a key instruction for a different source statement than the delay slot, the instruction is

annotated with both optimized source locations. Whenever execution halts on the branch

statement, the current source position is indicated as being both source statements.

A similar type of problem would exist if one were attempting to use key instructions

for setting breakpoints on a VLIW machine: Some number of instructions get executed

together atomically, and any subset of those instructions may be key instructions. Thus,

using our scheme on a VLIW machine, at any given breakpoint one could simultaneously

be at two or more source statements. Of course there are many other problems particular

to debugging on VLIW machines. Discussing them all is beyond the scope of this work.

4.3.2 Collecting Range Table Information

As mentioned in Chapter 3, in order to determine where to look for a variable,

after the program has been optimized, the debugger needs a list of potential locations, and,

for each location, the range of instruction addresses (program counter values) for which it

is valid. This information, usually referred to as the variable range table, must come from

the compiler.

In previous approaches to debugging optimized code this information was collected

by carefully tracking the location of each variable through all of the optimizations. Such

an approach is arduous and rather brittle: any time an optimization is added or changed,

the code for collecting the range table information needs to be changed too. Thanks to key

instructions, we were able to take a simpler, more robust approach.

We collect the data for the variable range table in two passes. The first pass is

performed at the end of the global optimization phase of the compilation. In this pass, the

internal representation of the program is traversed to find every node that is annotated as

“key” (i.e. will eventually become a key instruction). Remember that at this point these key

annotations represent all source level assignments to source level variables, and only such

assignments. Whenever such a “key” node is found, an entry is made in a table recording

the name of the variable receiving the new value, and the original source location of the

assignment.
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The second pass is performed after Optview finishes generating the optimized

source. This pass performs a variation of dataflow analysis on the compiler’s final control

flow graph (instructions) representing the program. The values being traced in this analysis

are location records, where a location record is a tuple containing an address or register

number, a variable name, the starting address for the record and the ending address for

the record. The starting address and the ending address indicate the range of addresses in

the binary for which the location record is valid. The starting address gets filled in when

the record is generated. The ending address gets filled in when the record is killed. Killed

records are retained, though not passed on during the dataflow analysis. At the end of the

dataflow phase, all information in the killed records is used to construct the range table.

The initial set of location records indicates the parameters for the current func-

tion, and where these parameters are initially located. As the analysis is performed, each

instruction is examined. If it overwrites a location in the current set of live location records,

the corresponding record is killed at that point. Every time a source assignment is encoun-

tered (annotated by a key instruction), a new location record is generated. If the actual

location specified by the new location record also occurs in another record in the current set,

the old record is killed at that point. Similarly if a record already existed for the variable

receiving the assignment, the old record is killed. Since variable names are not available in

the instructions at this point, the source location associated with the instruction is used to

look up the variable name in the table created during the first pass. The out set for each

basic block is the standard definition: the in set unioned with the set of generated records,

minus the set of killed records. The in set for each basic block (except the first one) is the

union of the out sets for all predecessor blocks.

Once the second pass is finished, the data gathered is combined and written into

a variable range table, which will be stored as part of the debug symbol table information

in the object code. One very nice characteristic of this approach is that the single dataflow

pass not only collects actual location information; it also, as a side effect, collects informa-

tion about variable eviction and uninitialized variables. Recall that an evicted variable is

one that is in the current scope, but which is currently dead, and whose value has been

overwritten (i.e. it is not stored anywhere). In the process of doing dataflow analysis to

determine the variable range table information, it is determined exactly where variables

become evicted. Entries are then made in the variable range table indicating ranges where

variables are evicted.
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We encountered one interesting problem when performing the dataflow analysis.

On reaching a basic block with multiple predecessors, it is possible that a variable which is

not live (and not evicted) at the entrance to the basic block may have its value in a different

place in each preceding basic block. Thus the correct location for the variable at this point

will depend on which execution path was taken. There are several possible solutions for

this problem, including putting all locations into the table and having the debugger insert

path determiners ([46]) in the binary during the debug session to indicate how execution

reached the current position; putting all locations into the table and returning values from

all locations to the user, if the user requests the value at that point in the execution; or,

ending all ranges for the variable at the end of the preceding basic blocks and making the

value unavailable. The last option in effect turns the variable into an evicted variable at

that point in the program.

We chose the last solution. We mark the variable as evicted at the end of each of

the preceding basic blocks, and use our eviction recovery scheme in the debugger to produce

the value of the variable in question at the user’s request.

4.3.3 Modifying the Symbol Table

The SGI compiler and debugger we modified use the DWARF Standard Debugging

Information Format ([32]) for representing and storing the symbol table information. This

standard, while not designed particularly for debugging optimized code, contains all the

pieces we needed, so we were able to add all the extra information necessary to the symbol

tables without changing the format used or violating the standard. There were four changes

we had to make to the symbol table, besides making it use the optimized source file rather

than the original one.

The first change was to associate with each variable a list of locations that are

valid for that variable, as well as the range of program counter values that are valid for

each location. DWARF allows either a single location or a location list to be associated

with variables. The original version of the compiler only stored single locations with each

variable. We took the information from our variable range table, built the appropriate

location list for each variable, and stored it in the symbol table.

In addition to indicating valid locations for looking up variable values, we also

wanted the symbol table to indicate those portions of the program for which a particular
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variable was uninitialized or evicted. At the same time we were trying to work within the

DWARF standard, which has no way of specifying non-location values in the location lists.

We resolved this problem by using two special absolute addresses that would never be valid

variable addresses in the computer to represent these two special conditions. We chose the

absolute address 0x01 to represent an evicted variable, and the address 0x04 to represent

an uninitialized variable. We then modified the debugger to interpret these two absolute

addresses accordingly.

The second change we made to the symbol table was in the line table. The line

table is the portion of the symbol table that indicates the mapping between source statement

positions and binary instructions. Rather than record the source statement position for

each binary instruction in the target program, the compiler only records the positions for

instructions whose source position is different from that of the preceding instruction (in a

linear traversal of the target program). This approach allows the compiler to skip recording

a lot of duplicate information, thus saving space in the line table. The compiler also assumed

that, since it was only making entries when the source position changed, every entry in the

line table represented the start of a new source line and should be treated as a statement

boundary. This assumption is reasonable to make for debugging unoptimized code, as in

that case the instructions for each source statement occur in contiguous blocks. However

once the program has been optimized this assumption is no longer correct. We modified the

compiler to only mark entries corresponding to key instructions as statement boundaries in

the line table.

The trickiest change we had to make to the symbol table was to add entries for

the “compiler temporary variables” that we introduced in the optimized source. If we show

those variables to the user and make them an integral part of the optimized source, then

we must allow the user to query their values, just like any other variables in the program.

Therefore they must have entries in the symbol table. When collecting the variable range

table information, via the dataflow analysis, we collect information about these variables as

well. Thus our variable range table contains the necessary information for these variables.

We use the range table to create the entries for these variables, after Optview has been

run and before the target program is generated. (The symbol table entries for “normal”

variables are created by the front end of the compiler, much earlier in the compilation

process.) One problem we encountered when creating these new entries was assigning them

a correct data type. The debugger refuses to attempt to display a variable’s value unless
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it knows what type of data the variable is supposed to represent. However these compiler

temporaries could hold any type of data. We finally settled for declaring them to be long

integers. Doing so at least allows the debugger to show the value to the user. Since the

language for which the compiler and debugger were implemented is C, the user has the

option of coercing the debugger into displaying the variable as a different type, via casting,

if desired. If this implementation were for a more type-safe language, getting the correct

type for these compiler temporaries would be a more serious problem.

The last change we had to make to the symbol table was to add a new “vendor-

specific” section, as allowed by the DWARF standard. This new section is the eviction

table section. The eviction table allows the debugger to quickly identify, for each function,

every instruction within the function that evicts a variable. The eviction table contains one

entry for each eviction that occurs in the target program. Each entry indicates the program

counter address of the evicting instruction, the name of the variable that the instruction

evicts, and the location from which the variable is evicted. The debugger then makes use

of this information to perform its eviction recovery.

4.4 Optdbx

Optdbx is the debugger we implemented for debugging optimized code. It has two

main components: a modified version of the SGI Dbx command line debugger, which handles

all the real debugging functionality; and a graphical user interface, which is responsible for

presenting the optimized source to the user in a relatively non-confusing manner and for

helping the user to find the correspondences between the original and optimized source

programs.

4.4.1 Eviction Recovery

By far the largest change we had to make to the SGI Dbx debugger was imple-

menting eviction recovery within in. Recall that an evicted variable is one that is in the

current scope, but which is currently dead (its value is not needed any more), and whose

current value has been overwritten (i.e. it is not stored anywhere). In the process of doing

dataflow analysis to determine the variable range table, Optview determines exactly where

variables become evicted, and this information is passed to the debugger via the symbol

table. The debugger then recovers the values of evicted variables as follows. Whenever the
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user sets a location breakpoint within a function (at function entry, at a particular line,

etc.), if it is the first breakpoint set in that function, the debugger will set hidden traps im-

mediately prior to all instructions that evict variables in that function. On reaching such a

trap, the debugger first checks the function information to determine what variable is being

evicted and where the value for the variable is. The debugger then saves the value of the

variable in its stack frame information5 and resumes execution. If the user requests to see a

variable which has been evicted, the range table will indicate the variable is evicted (i.e. the

variable will be indicated as having an absolute address of 0x01). The debugger will then

look for the variable’s value in the debugger’s frame information. If the debugger has saved

the value for the variable, it returns the value to the user. If the debugger does not have

the value, e.g. perhaps execution halted for some reason other than a user-specified control

breakpoint, then the debugger reports that the variable’s value is currently unavailable.

When the last user-specified control breakpoint is removed from a function, the debugger

also removes all evicted variable traps from the function.

Although the number of such traps in a given function may be significant, the

expectation is that the increase in execution time created by this caching of evicted values is

overshadowed by the time spent in the interactive breakpoint(s). By limiting this behavior

to only those functions where a breakpoint has already been set, most execution of the

program should be unaffected.

The advantages of our recovery scheme are that whenever a user-specified break-

point is reached, the values of all local variables are guaranteed to be available to the user,

as well as all global variables (which are always live, unless the compiler has an unusually

sophisticated analysis scheme), and the values of any variables that are arguments to func-

tions up or down the call stack (which must also be live). All of this is gained without

affecting the execution of the program other than in those functions where the user has

already indicated a willingness to change the execution.

The disadvantage of this approach is that it is only a partial recovery scheme for the

eviction problem. It is not a complete solution because the debugger can suspend execution

for reasons other than a user-specified breakpoint, e.g. an execution error, a user interrupt,

or a watchpoint. In those cases the debugger will not have saved the values of evicted

variables, unless such a suspension happens to occur in a function where a breakpoint was
5This information is the debugger’s information about the executing frame. The debugger does not touch

the actual stack frames of the executing target program.
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set. Also, if the user changes context by moving up or down the call stack, variables that

are not arguments to functions in the call stack may or may not be available.

4.4.2 Other Changes to Dbx

Other than eviction recovery we had to make very few changes to Dbx in order

for it to work with the optimized source. There were a few minor changes however. The

original Dbx was written with the assumption that a variable would always come with a

single location, rather than a location list (in spite of the fact that the symbol table format,

DWARF, allows for variables to have location lists). Therefore we had to modify Dbx

slightly to look up a variable’s value in the location list, if a list is provided. Two tiny but

important associated changes were: If the variable is shown as having an absolute address

of 0x04, the debugger reports to the user that the variable is currently uninitialized; and, if

the variable has no location entry at all the debugger reports to the user that the variable

was optimized away by the compiler. These two changes required almost no work in the

debugger but they convey very important, useful information to the user about the program.

The other change we had to make involved slightly more work, but still not a lot.

Since key instructions are being used to indicate where source statements occur in the target

program, we modified the debugger so that when the user sets a breakpoint on a source

statment, or chooses to single-step, next-step, or return from a function, the instruction at

which execution is actually suspended is always a key instruction.

4.4.3 The Graphical User Interface

As mentioned previously, using optimized source to allow the user to see some of the

effects of optimization greatly simplifies, or even eliminates, many of the classical problems

in debugging optimized code. However it does introduce a new problem: The user is now

confronted with a program she did not write, and which she must understand reasonably

well before any significant debugging activity can take place. By judiciously selecting the

optimizations whose effects are to be shown to the user, and carefully planning how to

present those effects, the impact of this problem can be reduced somewhat. However the

greatest, most important tool for minimizing this burden of understanding on the user is

the graphical user interface for the debugger.

The single most important aspect of understanding the optimized source program,
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for the user, is determining how it maps and relates to the original source program, as the

error will eventually have to be found and fixed in the original source, not the optimized

source. In order to facilitate this understanding we have created a graphical user interface

that displays the original source program and the optimized source program side by side.

By default the current execution position is highlighted in both sources. However if the user

wishes to figure out where a particular piece of code in the optimized source came from,

she can click on that code, and the corresponding code will be highlighted in the original

source. Similarly if the user is trying to figure out what happened to a piece of code from

the original program, she can click on the original code, and the corresponding piece(s) of

code in the optimized source will be highlighted. Figure 4.9 is a screen dump showing what

the interface looks like.

Figure 4.9: Screen dump of Optdbx

The scrolling text field on the left-hand side shows the original source program.

The optimized source is in the scrolling text field on the right. At the bottom is a third

scrolling text field, for entering standard dbx commands.

This graphical user interface was written using the Python programming language

[27], which is layered on top of Tcl/Tk [40]. On startup the graphical user interface creates
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two Unix pipes, then forks a process running our modified Dbx, with a pseudoterminal

between the pipes and Dbx. The user types standard Dbx commands in the scrolling

text field at the bottom of the screen, and the interface pushes these commands down

the pipe to Dbx, which executes the commands. Responses from Dbx return up the pipe

and are displayed in the Dbx command field. In addition to sending user commands to

Dbx, the graphical user interface also occasionally sends “hidden” messages to Dbx asking

about the current location in the source file, to make sure the source displays are updated

appropriately. This simple interface works well for the optimizations we have chosen to

display in Optview. For other optimizations, which may more seriously alter the appearance

of the source program, such as function call inlining or high-level loop optimizations, other

approaches are possible.
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Chapter 5

Measurements and Results

In the last two chapters we described a theoretical solution to the problem of

debugging optimized code, and an implementation of that solution. In this chapter we will

examine the practicality and effectiveness of this approach. There are three main questions

which this chapter attempts to answer: How does this approach affect the efficiency and

correctness of the compiler? How does it impact the efficiency and correctness of the

debugger? How difficult is it for people to use and understand the optimized source code

for debugging?

5.1 Compiler Data

5.1.1 Reliability

A critical requirement of any compiler is that the machine code it produces be

a correct translation of the original program. Therefore we will start by addressing the

correctness of the code produced by our modified compiler. The compiler from which we

started, the SGI Mips Pro 7.2 C compiler, is a commercial compiler, and therefore produces

correct code (most of the time). Thus if we can show that none of our modifications altered

or affected in any way the machine instructions generated by the compiler, then the machine

code output by our version of the compiler must also be correct.

Figure 5.1 shows a complete list of the modifications we made to the compiler,

with similar types of modifications grouped together.

The first group of modifications are those where we added fields or structures
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• Added structures to representation.

– Added structures for tracking key instruction tags.

– Added structures to track source position information at the expression level.

• Propagated key instruction tags throughout compiler.

• Collected information during compilation.

– Collected important pieces of parsing information and wrote them to a file.

– Collected information about performance of certain optimizations and wrote it to a file.

– Collected names of source level variables receiving assignments, and the source positions

of the assignment statements.

– Collected eviction table and range table information (via dataflow analysis).

• Updated source position information.

– Propagated source position throughout the compiler at the expression level.

– Corrected propagation of source positions throughout optimizations.

– Modified the source positions in the final internal representation to refer to the optimized

source.

• Added call to Optview prior to emitting machine code.

• Added or updated debug information.

– Modified debug information to point to optimized source rather than original.

– Added range table and eviction table information to debug information.

– Added compiler temporary variables that appear in the optimized source to debug in-

formation

– Modified the source positions in the debug information to refer to the optimized source

• Wrote out mapping between original source and optimized source.

Figure 5.1: Modifications made to the SGI Mips Pro 7.2 C Compiler
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to the existing data representations within the compiler. By adding to the existing data

representation we have not changed the way in which the compiler stores or uses any of its

data. Therefore these changes have not affected the correctness of the code generated by

the compiler.

Propagating the key instruction tags through the compiler entailed identifying ev-

ery location where a piece of internal representation is created, copied, or updated, checking

the tags on the code before the create, copy or update operation is performed, and then

modifying the tag fields appropriately after the operation. At no point does this alter or

interfere with operations the compiler was performing or the data on which the operations

were based. Thus propagating key instruction tags does not affect the correctness of the

code generated by the compiler.

To collect the parse data and the optimization information data, we added code

to the compiler at the places where it parses the structures in which we are interested, or

where it performs the optimizations to be reflected in the optimized source. The code that

we added to the compiler records the type of operation being performed by the compiler,

the original source position of the code fragments on which the operation is performed,

and other information, such as the common subexpression, which we may need to recreate

the effect of the optimizations in the optimized source. This information is appended to

data files that are later used by Optview. None of the code that collects this information

interferes with or alters in any way the processing performed by the compiler.

The names and source positions of variables receiving assignments are collected by

performing a traversal of the internal representation of the program, and writing the infor-

mation out to a file. Similarly the eviction data and range table information are collected by

performing a dataflow analysis on the final internal representation of the program. As none

of this data collection work interferes with or alters either the operations the compiler is

performing or the data on which the operations are based, it does not affect the correctness

of the code generated by the compiler.

Since the original compiler did not allow for recording source position information

at the expression level, we had to add data structures to contain this additional information

(as mentioned above). Thus propagating the source position information at the expression

level consisted of updating the values in these new, additional data structures. Doing so in

no way affected either the operations performed by the compiler or the data on which those

operations are based. On the other hand correcting the propagation of source positions in
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the existing structures throughout the optimizations, and updating the source positions in

the final internal representation to refer to the optimized source both involved changing

data in existing structures. This has the potential of changing the behavior of the compiler.

However the compiler itself never examines the data in these fields, and therefore never bases

any of its operations on the values in these fields. The sole purpose for these fields existing at

all in the compiler, is to allow the source positions to be written into the debug information,

if debug information is being generated. The contents of these source position fields have

no influence at all on the machine instructions which the compiler generates. Therefore our

changing and correcting the values in these fields does not affect the correctness of the code

generated by the compiler.

Adding the call to Optview could only change the correctness of the code generated

by the compiler if either the data on which the compiler is working, or the control flow

path through the rest of the compiler were altered as a result of calling Optview. Optview

generates the optimized source file, and in the process it reads the data files collected earlier

by the compiler, as well as traversing the final internal representation of the program.

However it does not alter the representation or any of the compiler’s data, nor does it

have any side effects that would cause the compiler to change its execution control flow on

returning from Optview. Therefore the call to Optview does not affect the correctness of

the code generated by the compiler.

The debug information generated by the compiler is stored in data structures that

are completely separate from the code being generated. The compiler writes information

into these structures, but never refers to or uses the data in any way to generate the machine

code. As with the source positions, the only use the compiler has for the debug information

is to write it out to the appropriate sections of the object file (completely distinct from

where the machine instructions are written) to be used later by the debugger. Because

the compiler does not read or use this data in any way, our modifying it and adding new

pieces to it does not change either the operations performed by the compiler (to generate

the machine code), nor the data on which those operations are performed or based. Thus

it does not affect the correctness of the code generated by the compiler.

The information about mapping between the original and the optimized source

files is contained within data structures created by Optview. These structures did not

exist within the compiler previously, and are not used by the compiler at all. Therefore

maintaining the data in these structures and writing it out to a file does not alter the
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operations performed by the compiler or the data on which those operations are based, and

therefore does not affect the correctness of the code generated by the compiler.

As we have just shown in detail, none of the modifications we made to the SGI

compiler have any effect on the correctness of the code being generated. Thus our modified

compiler is at least as correct and reliable as the SGI Mips Pro 7.2 C compiler.

5.1.2 Efficiency

Having established the reliability of our compiler, the next most common concern

is how efficient it is. There are several different ways in which efficiency can be measured,

including the speed of the compiler, the speed of the compiled code, and the size of the

file(s) generated. As was pointed out above in detail, the compiled code is the same as that

generated by the standard SGI Mips Pro 7.2 C compiler. Thus the speed of the compiled

code has already been extensively measured and documented (see Appendix B). Therefore

we will concentrate here on the speed of the compiler itself and the size of the resulting

files.

Compilation Time

We measured the compilation time of our version of the compiler and compared

it against the compilation time of the original unmodified compiler. The programs on

which we measured the compiler included the eight C programs from the SPEC95 bench-

mark suite (go, m88ksim, gcc, compress, li, ijpeg, perl, vortex). As we were

concerned about the possibility that the SPEC benchmark programs might have character-

istics that are not really representative of non-benchmark C programs, we also measured

five other C programs, test suite, philspel, eval-emon, measure1, and sm. These

programs were written by graduate students at the University of California, Berkeley. Test

suite consists of twenty small programs, ranging in size from 18 lines to 400 lines, which

were written to test the compiler as we were modifying it. Eval-emon is a 5,000 line pro-

gram that takes as input files containing data from hardware counters, and it performs a

series of calculations on this data, determining things such as cache miss rates. Philspel

is a small program that takes a dictionary and a document and performs spell-checking on

the document. Sm is a mid-sized (14,000 lines) graphics program. Measure1 is a group of

simulation scripts for testing a network resource clustering algorithm.
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The compilation times were obtained by using the Unix “time” command. For

those programs that consist of multiple source files, we timed the compilation of each

separate source file, and added the times to get the overall time for each program. Each

measurement was taken multiple times to verify its correctness. Before going into the

details, we should mention up front that no general conclusions about this approach should

be drawn from these numbers. They are specific to our particular implementation which,

being a prototype, was written with an emphasis on correctness rather than efficiency. The

results of our measurements are shown in Table 5.1. This table shows three compilation

times for each program. The first is the time for the original compiler, performing no

optimizations but generating debug information. The second is the time for the original

compiler performing optimizations and generating some debug information. The third is the

time for the Optview compiler performing optimizations and generating debug information

and optimized source. The last column in Table 5.1 shows the percentage increase in

compilation time between the original compiler performing optimizations and the Optview

compiler. The numbers in this table reflect the total elapsed time, in seconds.

As can be seen, our compiler on average takes 8 times longer to run than the

unmodified Mips Pro 7.2 C compiler. The SPEC benchmarks took anywhere from 3.4 times

longer to 12.1 times longer, averaging a 7.1 increase in compilation time. The increase for

the non-SPEC benchmarks was 3.0 to 26.4, with the average increase being 9.3. From these

numbers it seems fair to say that the SPEC benchmarks seem to be fairly representative of

other programs, at least for compilation times.

The worst case slowdown we measured, compiling eval-emon, was a 26.4 increase

in compilation time. As this is more than double the increase measured for any other

benchmark we examined the compilation of eval-emon more closely. Nearly two-thirds of

the compilation time was being spent compiling two functions (the program contains twenty-

four functions). Half of that time was being spent recording the optimization information

for those two functions in the back end information files, which were unusually large for the

two functions in question. On further investigation we discovered that the two functions

are both very long (roughly 800 lines of code each). They both contain very large switch

statements in which many calculations are duplicated, allowing for large amounts of common

subexpression elimination. Thus most of the slow down for this particular benchmark can

be attributed to reading and writing the back end information file for the two functions

mentioned above.



92

Original Original Optview Percent
Compiler Compiler Compiler Increase
(no opt) (opt) (opt)

go 25.6 115.1 1,408.2 1123.5 %
m88ksim 45.1 85.1 402.8 373.3 %
gcc 158.9 645.2 8,472.1 1213.1 %
compress 2.3 4.3 19.6 355.8 %
li 14.6 33.6 149.3 344.3 %
ijpeg 39.4 101.8 521.9 412.7 %
perl 34.0 105.1 1,344.4 1179.2 %
vortex 79.2 251.4 2,024.5 705.3 %
test suite 6.2 10.7 35.9 235.5 %
philspel 0.7 1.2 4.8 300.0 %
eval-emon 4.1 17.3 474.6 2643.4 %
measure1 7.3 17.2 104.3 506.4 %
sm 30.7 88.3 967.2 995.4 %
Avg. (SPEC) – – – 713.4 %
Avg. (non-SPEC) – – – 936.1 %
Avg. (All) – – – 799.1 %

Table 5.1: Compilation times of original and modified compilers (in seconds)
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Even discounting the eval-emon benchmark, the numbers shown in Table 5.1 rep-

resent a significant increase in compilation time. However these numbers should really be

regarded as a worst-case measurement of the slowdown to be expected. As we stated previ-

ously, our modifications were not written with efficiency in mind. As this was a prototype

system, we were much more concerned with the correctness of what we were writing than

with making it efficient. As a result of this emphasis on correctness rather than efficiency,

there are many parts of our implementation that leave much room for speed improvements.

For example while generating the optimized source Optview parses pieces of the original

source program. The code that does this is not very efficient and may traverse a segment of

code multiple times searching back and forth for particular language constructs. Replacing

this inefficient parsing code might significantly improve the compilation time for Optview.

Another reason for the large slowdown can be attributed to the fact that we had to work

within an existing compiler, adding things to a system that was never originally designed

for them. For example we modified both the front end and the back end of the compiler to

collect data that we would need later for constructing the optimized source. As the compiler

itself did not allow for any method of passing this data around internally, our implementa-

tion writes the data to temporary files and later reads it back from those files. By designing

a compiler which could keep such information in internal structures, thus avoiding reading

and writing these files, the compilation time could be significantly improved. In addition

there were certain data structures that we were not allowed to modify directly. Therefore

we had to resort to roundabout, inefficient methods in some cases for adding data about

key instruction tags and source positions to the compiler. In summary, while the measured

speed of our compiler does not compare well against the unmodified compiler, it should not

be taken as a very accurate predictor of the impact of our approach on a compiler better

designed to support debugging of optimized code.

File Size

In addition to the compilation time, we also measured the size of the optimized

source files, and the size of the debug information generated by our compiler. When gen-

erating the optimized source, information and statements are added to and inserted in the

original source, but nothing is removed. Therefore one should expect the optimized source

to be at least as large as the original source, usually larger. The real question is, how
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Original Optimized Percent
Source Source Increase

go 18,671 42,224 126.15 %
m88ksim 16,826 26,432 57.09 %
gcc 180,019 267,732 48.72 %
compress 1,427 1,942 36.01 %
li 6,731 9,161 36.10 %
ijpeg 24,815 35,820 44.35 %
perl 23,657 38,592 63.13 %
vortex 52,633 74,641 41.81 %
test suite 2,519 2,897 15.01 %
philspel 141 249 76.60 %
eval-emon 5,024 7,705 53.36 %
measure1 2,866 4,852 69.30 %
sm 14,102 21,989 77.20 %
Avg. (All) – – 57.30 %

Table 5.2: Comparison of size (number of lines) of optimized source with original source

much larger? Using the same programs we used for measuring the compilation speed, we

examined the size of the optimized source programs. Table 5.2 shows a size comparison of

the optimized source versus the original source. Again, in those cases where the program

listed actually consists of multiple source files, the numbers shown are the sum from the

source files involved. They indicate the total number of lines in the source files, including

comments, white space, preprocessor directives, etc. To make the comparison more accu-

rate we only counted source files for which the compiler generated optimized source, i.e.

only files that contain executable code. Files such as header files that contained only dec-

larations or data definitions were not included in the count. As can be seen, in most cases

the optimized code is not much more that 50% larger than the unoptimized code. The one

exception is the go benchmark. This difference is due mainly to the heavy use of arrays in

go. The Mips Pro 7.2 C compiler aggressively optimizes array index calculations. Optview

currently makes all of these optimizations and calculations explicit in the optimized source,

introducing many compiler temporaries into the source in the process. Because arrays are

used so frequently in go, and because of the nature of arrays in C, the resulting optimized

source is quite a bit larger than the original.
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Since the debug information gets written into the object files that the compiler

generates, in order to determine the increase in the size of the debug information we mea-

sured the size of the object files generated by our compiler. Again the size of the object file

for each source file was measured and then these measurements were summed to get the

total for each program. Table 5.3 compares the size of the object files, in bytes, generated

both by the original compiler and by our modified compiler. For the original compiler we

measured the object file size both with and without optimizations. Most of the time the

optimizations caused the object file to be smaller, although in a few cases they actually

made the object file larger. As described earlier in this chapter, the machine instructions

generated by both versions of the compiler are identical. Therefore any difference in file

sizes between files generated by the original compiler performing optimizations and those

generated by the Optview compiler must be due entirely to additions to the debug infor-

mation. As can be seen, adding all the necessary information for accurate debugging of

optimized code significantly increases the size of the object files (on average the overall size

increases by 1.7 times).

This increase in size can be attributed to several different causes. To begin with,

one must remember that the debug information generated by the original compiler is both

inaccurate and incomplete, since the compiler performed optimizations but did not account

for that when generating the debug information. Thus the debug information generated by

the original compiler contains only a single location for each local variable, whereas mine

contains complete range location lists. The original compiler’s debug information does not

contain any information about compiler temporary variables, whereas mine does. It does not

contain any variable eviction information; mine does. Finally its line mapping information,

for mapping between locations in the optimized machine code and the source program, is

completely inadequate and incorrect. In other words, to summarize, the debug information

generated by the original compiler is smaller, but it is also useless for reasonable debugging

of optimized code.

On close examination of the sizes of the object files one can see that once again, the

size for the go benchmark is significantly larger than any of the others. This is not surprising,

since the optimized source for go has so many more compiler temporary variables in it. The

debug information generated for go has to have name, scope, and type entries for all these

extra variables, in addition to needing the range table location for each of them. This would

make the size of the debug information for this benchmark very large as well.
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Original Original Optdbx Percent
.o size .o size .o size Increase

(no opt) (opt) (opt)
go 909,672 830,792 3,401,336 309.40 %
m88ksim 973,744 974,044 1,911,408 96.23 %
gcc 5,415,464 4,856,320 16,122,120 231.98 %
compress 99,436 99,132 132,888 34.05 %
li 351,076 359,032 731,284 103.68 %
ijpeg 1,062,092 1,021,080 2,471,196 142.02 %
perl 1,076,740 1,006,968 2,986,192 196.55 %
vortex 2,462,200 2,555,924 6,678,084 161.28 %
test suite 134,828 130,712 204,224 56.24 %
philspel 15,208 14,724 30,520 107.28 %
eval-emon 164,076 119,224 376,024 215.39 %
measure1 173,640 172,064 480,188 179.08 %
sm 766,040 528,072 2,035,164 285.40 %
Avg. (SPEC) – – – 159.40 %
Avg. (Non-SPEC) – – – 168.68 %
Avg. (All) – – – 162.97 %

Table 5.3: Size of generated object files, in bytes
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5.2 Debugger Data

In the implementation of our ideas we chose to perform limited eviction recovery

within the debugger, only capturing the values of evicted variables within those functions

where the user has already specified a control breakpoint. The reason given for choosing

this solution, rather than performing eviction recovery throughout the entire program, was

the claim that attempting the latter would have too much of a negative impact on the

execution time of the program, while the solution we chose would not.

To verify this claim we took several different timing measurements within the

debugger. These measurements were taken by running our benchmark programs from within

the debugger, using various levels of eviction recovery. We modified the debugger to perform

eviction recovery in the specified functions without there being any control breakpoints, as

such breakpoints would interfere with our timing measurements. The time it took each

program to execute was measured. As the most important question to answer is not how

long it takes the CPU to process, but how long the user has to wait for the program to

complete, the time measured was the total elapsed time, from the user’s perspective. This

time was obtained by modifying the debugger to print the current system time both when

it initially starts executing the program to be monitored, and when the execution of the

program terminates. We then take the difference between these two times.

Finding appropriate functions in which to perform eviction recovery for our mea-

surements was more difficult than we anticipated. The SPEC benchmarks, because they are

used to measure compiler and CPU efficiency, are very CPU intensive. We came across one

case where a single function was called over 100 million times during execution. Although

for each call only 30 eviction recoveries were performed, the overall result was a total of 3

billion eviction recoveries being performed. We were unable to measure the total execution

for eviction recovery in that particular function. In another instance a function was called

over 500,000 times, resulting in over 7 million eviction recoveries.

Because of situations like these we were unable to find suitable functions for mea-

suring the effects of eviction recovery for three of the SPEC benchmarks, gcc, m88ksim,

and vortex. Test suite and sm both require much user interaction when executing, and

so no meaningful timing measurements could be taken for them either. The results of our

eviction recovery measurements on the other eight benchmarks are shown in Table 5.4. All

the times shown are in seconds.
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No. No. Avg.
Time w/o Time w/ Static Dynamic Time/
Recovery Recovery Slowdown Traps Traps Recovery

go 666 706 (4 funcs) 40 37 1,614 0.025
compress 784 788 (1 funcs) 4 19 552 0.007
li 566 799 (1 funcs) 233 12 21,600 0.011
ijpeg 270 377 (6 funcs) 107 64 8,136 0.013
perl 309 323 (7 funcs) 14 74 590 0.024
philspel 1 122 (3 funcs) 121 16 9,940 0.012
eval-emon 1 97 (4 funcs) 96 570 612 0.168
measure1 9 1,985 (1 funcs) 1,976 149 78,204 0.025
Average – – – – – 0.036

Table 5.4: Eviction recovery timing measurements (in seconds)

The first column shows the time it took to execute the program without any

eviction recovery. The second column shows the execution time with eviction recovery

being performed in one or more functions. The number of functions with eviction recovery is

shown in parentheses. The third column shows the difference between the first two columns,

indicating the time spent on eviction recovery. The next two columns show the number of

eviction traps set (static) and the number of eviction recoveries performed during execution

(dynamic). The final column shows the average time spent on each eviction recovery. As

can be seen this varies anywhere from 0.007 seconds to 0.168 seconds, with the overall

average being 0.036 seconds.

At first glance this slowdown may seem a heavy penalty to pay for eviction recovery.

However the impact really depends on the dynamic number of eviction recoveries performed.

In all the benchmarks shown except one, the overall execution times were extended by four

seconds to at most two minutes. This is not bad. For measure1 it was extended by thirty-

three minutes, but 78,204 eviction recoveries were performed.1 Based on our data and

observations it is correct to state that performing eviction recovery everywhere would cost

too much in terms of execution time.

Given situations such as the single SPEC benchmark function that resulted in over

3 billion eviction recoveries, and which, at an average of 0.036 seconds per recovery would
1The function contained several loops that executed thousands of times.
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take roughly 3.4 years to execute, one might be misled into assuming eviction recovery is too

costly even within a single function. However one should recall that eviction recovery will

only be performed in a function while the user has a control breakpoint set in the function.

A user is highly unlikely to want to stop in each of the 100 million calls to the function

mentioned above. Even if the user did so, the time spent by the debugger in processing

the user breakpoint would overshadow the time spent performing eviction recovery (less

than one second per function call). As soon as the user removes the breakpoint from the

function, the debugger will stop performing eviction recovery, and execution should return

to its former speed.

Another possibility to consider is speeding up the execution time per eviction

recovery by using code patches rather than full-blown breakpoints. In our current imple-

mentation each eviction recovery requires two full context switches, which is expensive. If

one could discover a way to perform eviction recovery without these context switches it

would significantly lower the time cost.

5.3 Usability of the Optimized Source

The third question which we wanted to answer, how difficult it is for people to

use and understand the optimized source code for debugging, is the most important one.

If people cannot use and understand the optimized source code, then this entire approach

to debugging optimized code becomes invalid. At the same time, this is the most diffi-

cult question to answer. Unlike such information as average increase in the size of debug

information, or the average slowdown of the compilation, the usability of the optimized

source code is not something that can be easily and objectively measured. It is subjective

for each user, and the same piece of optimized code might get two very different usability

ratings from two different users. Some factors that may affect whether or not a user finds

the optimized code usable and understandable include how much experience the user has

attempting to maintain code that other people wrote; how well the user understands the

types of transformations an optimizer might perform on code; how familiar the user is with

the programming language being used; how much experience the user has writing programs;

and how well the programmer knows the particular program that was transformed. In ad-

dition, the manner in which the optimized source is presented to the user, and the types of

help and explanations (if any) provided by the debugger, will have a huge impact on the



100

user’s impression of how easy or hard it is to understand the optimized source.

In order to collect some information on the understandability of the optimized

source, we made our implementation available to people at SGI and to other computer

science graduate students at the University of California, Berkeley. We asked people to try

out our tools for debugging optimized code, and to give us some feedback on how usable

they found the system.

Most of the people who tested our system did not really have a bug they were

trying to find. They monitored correctly working programs, stepping through execution

and examining variable values, in order to get a feeling for how easy or difficult it was to

use and understand the optimized source. A significant portion of those who were interested

in trying out our tool did not have any C programs of their own to use. We supplied them

with three programs they could try: a small (100 lines) quicksort program, a Lisp interpreter

program, and a file compression program. The last two were from the SPEC95 C benchmark

suite of programs. About half of the people who examined the optimized source using our

tool were graduate students, specializing in many different areas of computer science. The

other half were programmers from SGI, all of whom work in the compilers group.

5.3.1 Summary of User Feedback

In the end sixteen people tried out our tool and gave us feedback on it. Out of

those sixteen, two people had a lot of trouble understanding the optimized source. One of

those two did not know anything about optimizations, and felt that this fact, combined with

the facts that there was no assigned task to be performed and that the code being examined

had been written by someone else, made it very difficult to get a real feeling for how easy

or hard it would be to use optimized source for debugging. The second person felt that

the main obstacles to using and understanding the optimized source were the meaningless

names given to the compiler temporary variables introduced into the optimized source, and

the bugs in our source-to-source correspondence mapping. The second person felt that if

these problems were fixed the optimized source would be usable.

In addition to the two who had a lot of trouble understanding the optimized source,

it was unclear from the feedback we received from a third person whether or not that person

could use and understand the optimized source.

The remaining thirteen users were all able to use and understand the optimized
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source, with varying levels of comfort. One commented that it was a bit confusing at first,

but one could get used to it after a few tries. Another person expressed the opinion that

people who understand optimization techniques would have no trouble understanding the

optimized source, but those who were unfamiliar with optimization techniques might find

the optimized source hard to use. A comment we received from yet another person was

that the tool would probably be much more useful to compiler developers and testers than

to normal compiler users.

The one person who supplied her own code, and who had a bug to find, did succeed

in finding her bug using our tool. Several other people commented that if they had had this

tool a few months ago, it would have helped them find bugs they had been working on.

A frequent comment in the feedback was that showing both the original and the

optimized source, and highlighting the correspondences between them was crucial to under-

standing the optimized source. A common complaint, echoing one of the two users who had

trouble with the optimized source, was that the compiler temporary variables introduced

into the optimized source have meaningless names, and this made it hard to relate them

back to the original source. We received several suggestions for dealing with this problem,

including using more meaningful names, removing these variables from the optimized source

wherever possible, and using special colors, highlighting, or tool-tip texts to indicate how

they relate to variables in the original source.

As this is a prototype system, not all the bugs have been worked out of it. The

users found several which they reported. Fixing these bugs should make understanding the

optimized source much easier. They also sent us quite a few suggestions for improvements

and features they would like to see. Figure 5.2 lists a summary of the bugs reported,

and Figure 5.3 lists a summary of the suggested improvements. Appendix A contains the

complete texts of the feedback we received, with any personal or identifying information

removed.

5.4 Summary

In this chapter we have shown that the machine code generated by our compiler

is reliable and correct. We have presented measurements of the compilation speed of our

compiler, the size of the optimized source files generated, and the size of the debug infor-

mation. We have also shown the impact of eviction recovery on the execution times within
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• Dereferencing compiler temporary variables (pointer values) does not work properly

• Could not always print values of all variables shown in optimized source

– Some “dead” variables still show up in source

– Not all temporary variables used by compiler are shown in source

• GUI error caused some attempts to disable breakpoints to fail

• Source-to-source mapping in GUI not always correct

• Variable range table information, in symbol table, occasionally off by one instruction address

• GUI is slow to respond

• Standard dbx command “set $hexints=1” causes GUI to crash

• Dbx loses context after program being monitored terminates (reaches end of normal execution)

• Optimized source is not always correct, especially for more complicated programs

Figure 5.2: Summary of bugs reported in our tool.

the debugger, and we have presented feedback from users who tested our tool and examined

the optimized source.

Using our compiler takes significantly longer than using the original compiler. This

fact is not particularly disturbing, however, as our implementation focussed on correctness

rather than efficiency. There are many places in our implementation where the compila-

tion speed could be improved, particularly if one had free reign to modify or redesign the

compiler.

Not surprisingly, the optimized source is larger than the original source. However it

is usually less than twice the size of the original. Adding all the debug information necessary

for accurate debugging of optimized code significantly increased the size of the object files

(on average making them 1.8 times larger). Unfortunately optimizations greatly complicate

the debugging information one needs to maintain. Without this extra information one

cannot hope to have a debugger that behaves correctly in the presence of optimizations.

The vast majority of the user feedback we received was positive. People did en-

counter some bugs in our prototype, and there were many suggestions for improvements.

Overall people seemed to feel that the optimized source is both usable and understandable,
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• Use more meaningful names for compiler temporary variables

• Support some more sophisticated optimizations

• Extend to C++

• Add more explanations of how & why optimizations are performed

• Use tool-tip text to explain some optimizations in optimized source

• Add declarations for compiler temporary variables

• Remove uses of compiler temporary variables wherever possible

• Add comments indicating which macros were expanded

• Add syntax highlighting

• Make the GUI windows movable and resizable

• Add a menu for common commands

• Add a window for watching variables

• Add program slicing to help understand compiler temporary variables

• Add more buttons & features that are standard to window-based tools

• Make the debugger explanations more helpful, less vague

Figure 5.3: Summary of suggestions for improving our debugger tool.
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and that our approach to debugging optimized code is a good, viable, usable approach.
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Chapter 6

Conclusion

This dissertation has examined both the theoretical and the practical issues in-

volved in non-transparent debugging of optimized code. In particular it has explored the

difficulties and benefits resulting from using an optimized version of the source program,

which reflects the effects of some of the optimizations performed by the compiler, for all user

debugging activities. This work culminated in the implementation of these ideas within an

existing commercial compiler and debugger, and the collection of measurements and user

feedback on the system. These results indicate that this is indeed a viable approach to de-

bugging optimized code, one that greatly simplifies many of the problems and significantly

advances the technology in this area.

6.1 Summary of results

The problem of designing a source-level interactive debugger for optimized code

has received a fair amount of attention over the last fifteen years. While in many situations

compiling a program without optimizations and using a standard debugger on the unop-

timized code may be sufficient to find and correct all the errors in a program, there are

situations wherein this approach may be insufficient. Some of these cases include when the

program’s behavior differs depending on whether or not optimizations are applied, when

debugging must be performed on an optimized core dump, or when either because of re-

source requirements of the program itself, or peculiarities of the particular compiler used,

the code cannot be compiled and executed without optimizations.

In such situations debugging must be performed on the optimized program. Since
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“standard” source-level interactive debuggers cannot correctly handle optimized code, this

leaves the user with the option of either attempting to debug the program at the assembly

code level (which requires intimate knowledge of the assembly language for the machine in

question), or else using a tool specifically designed for debugging optimized code.

In the past designers of debuggers for optimized code have advocated taking a

transparent approach, presenting the user with the original source program, and attempting

to respond to all user requests exactly as if the program were unoptimized, in effect making

the optimizations transparent to the user. These approaches all have serious flaws. To

begin with, there are certain situations in which it is impossible for the debugger to hide

the effects of all optimizations from the user. In such cases, these debuggers fall back on

truthful behavior, reporting to the user that optimizations either caused variables to contain

unexpected values, or that because of optimizations a variable’s value may be unavailable,

or explaining other inconsistencies between the user’s view and the underlying, executing

code, which have been caused by optimizations.

In addition to full transparency not being realizable, by attempting to map corre-

spondences between the optimized target program and the original source program, which

may be quite far removed from one another due to optimizations, these transparent ap-

proaches greatly add to the difficulty and complexity both of implementing the compiler to

build and maintain these complex correspondences, and of implementing the debugger to

decipher and use them. Finally, by forcing the user to look at a source-level representation

that bears very little resemblance to the underlying executing code, these approaches may

actually mask bugs from the user, making them harder to detect.

By taking a non-transparent approach to debugging optimized code, allowing users

to see how the optimizer altered their programs, we have greatly simplified many of the

problems associated with debugging optimized code.

6.1.1 Revealing effects of optimizations

In this dissertation we have presented an alternative approach to debugging opti-

mized code. By creating a source-level representation of the program that reveals many of

the effects of optimizations performed by the compiler, our solution allows users to obtain

a much clearer, more accurate picture of what is occurring in their programs. Furthermore

by removing the artificial constraints involved in hiding all the optimization effects from the
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end user, this approach greatly simplifies the implementation of debuggers for optimized

code, both in the compiler and in the debugger. In fact the currency problem, which is

the single most difficult and complex problem facing transparent approaches to debugging

optimized code, vanishes entirely, merely by allowing users to see the actual order in which

source assignments take place in the optimized program. (Recall that the currency problem

occurs because the actual value a variable contains may be different from that which the

user expects, due to variable updates occurring in different orders and locations than that

indicated in the original source program.)

We have described a particular non-transparent approach to debugging optimized

code, namely generating an optimized version of the original source program, based on the

actual optimizations performed by the compiler. This optimized source program reflects

those optimization effects which have the greatest impact on the ability of a source-level

debugger to give the user accurate information about the executing target program, namely

those optimizations that reorder, rearrange, insert, or remove code from the program, and

those which affect when and where source-level variables are updated. We have carefully

described both the theoretical and practical considerations necessary for designing and

implementing a tool to generate such optimized source.

We have demonstrated the practicality of these ideas by implementing them within

a tool Optview, which we have embedded with a commercial, highly aggressively optimizing

compiler, the SGI Mips-Pro 7.2 C compiler. Optview generates optimized source for C pro-

grams. We have also modified the SGI dbx debugger to work correctly using the optimized

source, and we have implemented a graphical user interface to help users understand the

optimized source and relate it back to the original.

6.1.2 Key Instructions

In addition to describing and demonstrating a non-transparent approach for debug-

ging optimized code, we have introduced the concept of key instructions. Although the idea

of identifying, for each source statement, the single machine instruction that most closely

embodies the semantics of the statement was mentioned in passing both by Zellweger[47]

and by Copperman[15], neither of them pursued the concept. We initially worked on the

idea of key instructions only for their use in aiding Optview to generate the optimized source

programs. However we have found key instructions to be extremely versatile and useful. In
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fact much of their usefulness is entirely independent of whether one is taking a transparent

or non-transparent approach to debugging optimized code. In addition to helping determine

the final ordering of source statements in the target program (to reflect the same order in

the optimized source), key instructions provide an easy and natural solution for the code

location mapping problems. Key instructions are good indications of where to set control

breakpoints that correspond to source statements, and they are also useful for reporting the

location of execution errors.

Finally using key instructions allows data for the variable range table to be col-

lected by performing a single dataflow analysis pass on the compiler’s final internal repre-

sentation of the program. This is much simpler and more robust than the old approach of

tracking variables’ locations through each step of the optimizer. By waiting until the very

end of the code generation phase of the compiler, the representation on which the dataflow

analysis is performed explicitly shows all reads and writes to memory, all register alloca-

tions, all register spill and recovery code, etc. This approach is completely independent of

which optimizations the compiler performs and how those optimizations are implemented.

The analysis only needs to be performed once, as the data at this stage will not change, and

the data obtained from the analysis is completely accurate. However this technique could

not be used if one could not determine where, in the representation, assignments to source

level variables were occurring and which variables were receiving the assignments. Prior

to our introduction of key instructions, this information was unavailable at this stage in

the compilation. Thus previous approaches to creating variable range tables had to pursue

more difficult, less robust options.

6.1.3 Eviction recovery

By implementing our approach not only within the compiler, but also within the

SGI dbx debugger, we have been able to describe, implement and test a partial solution to

the eviction recovery problem. Recall that the eviction problem arises because a variable

which may be within the current scope can also be “dead”, i.e. its value is no longer needed

for the computation. In such cases, the optimizer allows the variable’s storage location to be

re-used for some other value without saving the value for the dead variable anywhere. From

the compiler’s point of view this is not a problem, as the dead value is not needed any more.

From the debugger’s point of view this is a nightmare, because although the value may not
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be needed any further in the computation, the user may still wish to examine it. However

as the compiler has allowed the value to be overwritten without saving it, the requested

value is lost and unavailable. We have designed and implemented a scheme whereby the

debugger captures and saves these dead values before they are overwritten and lost, thus

allowing the debugger to answer user queries about these values. Our solution is a partial

solution, because the debugger only performs this eviction recovery in those functions where

the user has set a control breakpoint.

6.1.4 Using and understanding optimized source

As we mentioned previously, taking a non-transparent approach to debugging op-

timized code greatly reduces or eliminates many of the problems involved in this topic.

However using optimized source to represent some of the effects of optimizations also intro-

duces a new concern: users are now confronted with source code that is different from what

they wrote, and they are expected to understand it and use it to debug the program. It

is critical that users be able to understand and use the optimized source in this approach.

This requirement has been known from the beginning and has shaped many of the design

decisions in Optview. Some of the decisions made to minimize the relative strangeness

of the optimized source include not attempting to represent all optimizations in the opti-

mized source; performing all transformations at the source level, starting with the original

source, rather than attempting to reverse engineer the optimized source from the optimized

binary, and re-using fragments of the original source program wherever possible in the op-

timized source, especially white spaces, comments, declarations, and high-level control-flow

constructs.

In addition to directly minimizing the differences between the optimized source and

the original source, we further reduced the burden of understanding the optimized source

by introducing a graphical user interface (GUI) front end to the debugger which shows the

user both the optimized source and the original source simultaneously, and highlights their

correspondences.

6.2 Practicality of this approach

In addition to designing and implementing the solutions described above, we col-

lected data on the speed of our compiler, the size of the files it generates, the impact of
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eviction recovery on the execution times of programs, and the understandability and usabil-

ity of the optimized source programs generated by Optview, in order to determine whether

or not this approach is really practical.

Our modified version of the compiler took significantly longer to compile the test

programs than the unmodified version of the compiler (on average it took 6.6 times longer).

However, as explained in great detail in the previous chapter, this is not really a meaningful

measurement, as our modifications were never made with speed or efficiency in mind, and

we were forced to work within the very narrow constraints of an existing compiler, certain

portions of which we were not free to modify.

The optimized source files were, on average, roughly 50% larger than the original

source files. Some increase in file size is to be expected as our implementation occasion-

ally adds to the original source when creating the optimized source, but it never removes

anything from the original source. This size does not seem unreasonable.

The object files generated by our modified compiler were also larger than those

generated by the unmodified compiler, averaging 1.8 times bigger. This increase in size is

due to all the additional debug information that needs to be recorded and stored for accurate

debugging of optimized code. It includes more accurate source position mappings between

the target program and the optimized source; eviction recovery information for the debugger;

the variable range table information, for looking up variable values; and, information about

any compiler temporary variables introduced into the optimized source. With the exception

of the information about compiler temporary variables, all the information listed above is

necessary for accurate debugging of optimized code, independent of whether one is taking

a transparent or non-transparent approach. Without it one cannot hope to obtain correct

information about the state of the executing program. Also one should remember that

the debug information generated by the unmodified compiler, while smaller in size, is also

incomplete and inaccurate in the presence of optimizations.

The eviction recovery measurements indicate that when eviction recovery is per-

formed in a single function, the impact on run time is minimal (0-9 seconds). However

increasing the number of functions in which eviction recovery is performed only slightly

causes a much more visible degradation in the execution time of the program (14 seconds

up to 13 minutes). From these numbers, and from the fact that we were unable to get any

program to complete in a reasonable amount of time when performing full eviction recovery,

we believe it is fair to conclude that until a faster, more efficient eviction recovery scheme
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is discovered, full eviction recovery is impractical.

The user feedback we received, indicating the usability and understandability of

the optimized source generated by Optview, was mostly positive. Those who did have some

trouble with the optimized source had suggestions that they believed would have made

the optimized source usable for them. The vast majority of the users found the optimized

source usable, in spite of some bugs they found in our system. The overall conclusion we

have reached from reviewing the user feedback is that, as it stands, our optimized source is

a little difficult to understand, but is usable. There are a few modifications we could make

to the system and errors we could fix that would make it much easier to use and understand.

Most of the problems that users had seem to be attributable to bugs or peculiarities of our

implementation, rather than to any flaw in the basic ideas and concepts. Thus, while our

system still needs work we have demonstrated that, overall, this is a viable, reasonable and

practical approach for debugging optimized code.

6.3 Future Directions

While the system we have designed and implemented is sufficient to demonstrate

the viability of this approach to debugging optimized code, there is much room for future

work and improvements. For example the optimizations that Optview currently incorpo-

rates into the optimized source do not radically alter the original source program. The main

changes Optview makes to the source are to reorder and move statements around somewhat,

insert assignment statements, and substitute compiler temporary variables into expressions.

One avenue it would be interesting to pursue would be to investigate extending the opti-

mized source to include some optimizations that more drastically change the appearance of

the source. Good examples of this type of optimization include function call inlining, and

high-level loop nest optimizations. Both of these types of optimizations are representable

at the source level, but both would require significantly changing the appearance of the

source program. It would be interesting to further pursue exactly how to represent these

optimizations in the source so as to minimize the user’s difficulty in recognizing and un-

derstanding the source. In parallel to designing the optimized source itself, one would also

need to investigate various possible methods for presenting the drastically altered optimized

source to the user. One possibility is to use multiple layers of representation. The tool could

actually generate two or three representations of the optimizations, with various levels of
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accuracy or resemblance to the original source. The user would then have the option of

navigating between these various representations moving either towards greater accuracy

in the optimization representation or towards greater resemblance to the original source

(at the expense of optimization accuracy). The GUI interface would be absolutely vital in

helping the user to understand and navigate through these more complex optimizations.

The GUI would also require a more complete help system, perhaps even a simple tutorial

on optimization techniques, for those who would be interested. All of this would be a very

interesting, valuable area to pursue.

Another area of research interest would be the use of optimized source in allowing

debuggers of optimized code to update variable values. To date all debuggers for optimized

code (including ours) automatically disable allowing users to directly update variable values.

However this is a very common feature in standard debuggers for unoptimized code, and one

that many programmers would desire. The reason that debuggers for optimized code disable

this functionality is as follows. Optimizers always attempt to determine the actual values of

the variables they are manipulating, if possible, as that often enables them to perform more

optimizations. Some of these value-specific optimizations include directly using the value

of the variable in the target program instead of referring to the variable by name, or even

eliminating entire pieces of the computation because the optimizer can determine, if the

variable has a particular value, that a particular piece of code will never be executed. Thus

the conventional wisdom has been that if users are allowed to update variable values after

optimizations have taken place, they may invalidate some of the assumptions the compiler

made, and the result could cause the program to behave incorrectly. However if all of the

assumptions made by the optimizer can be explicitly shown in the optimized source (i.e.

users can see where constants are used instead of variable values and which pieces of code

have been optimized away) then perhaps users can update variable values after all with no

bad effects.

It would also be useful to pursue the possibility of creating and using code patches

to perform eviction recovery. In the scheme we implemented, the debugger has to perform

a complete context switch (two, actually) every time it needs to capture an evicted value.

This is very expensive. If it were possible somehow to create code patches for capturing

these values instead, eviction recovery could run much faster, and it might even become

practical to perform full eviction recovery.

Finally in our work we have concentrated heavily on the C language, as that was
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the compiler we had to work with. It would be both interesting and beneficial to further

investigate the practical side of what it would take to implement these ideas for other

languages, especially C++ and Java, as those are two widely used languages, each with

interesting features. Extending the work to C++ would mean incorporating function call

inlining into the optimized source, as well as type inferences and dynamic dispatch (both

of which would be relatively simple). Covering Java would mean dealing with garbage

collections, which may add another layer of complexity, especially to the problem of tracking

variable locations. In addition, there are languages such as ML which have very different

kinds of optimizations, and which also have much more complete language descriptions. It

is less clear whether there would be any benefit in applying this kind of approach to those

languages.

6.4 Advantages and contributions of this approach

6.4.1 Advantages of this approach

In this dissertation we have presented a complete solution for debugging optimized

code, outlining and implementing the work to be done in the compiler, in the debugger, and

in the tool to generate the optimized source. This solution does not in any way limit or alter

the optimizations performed by the compiler, nor the functionality of the debugger1. It does

not require special recompilations of the source, it puts no limits on the users’ actions, and

it does not alter in any way the code generated by the compiler. The code that is debugged

is exactly the same as that which first exhibited the error.

Furthermore, this approach required only minimal changes to the symbol table

and to the debugger. The SGI Mips Pro 7.2 C compiler uses the DWARF 2.0 Standard[32]

symbol table format, which already contains all the features necessary for debugging opti-

mized code. Implementing all the changes necessary for the symbol table and the debugger

combined, including the time required to learn them, took approximately four months.

The optimized source code generated by Optview is very versatile. In addition

to being useful for debugging of optimized code, such optimized source would also be very

helpful to those who work on performance analysis and tuning, as those people are con-

fronted with many of the same problems facing people debugging optimized code: they
1With the exception that is does disable users updating variable values from within the debugger.
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must find some mapping between the optimized target program and the source program in

order to attach meaning to the numbers and measurements they obtain. Optimized source

would also be useful as a teaching tool for classes or individuals who wish to learn more

about optimization techniques and who do not wish to examine the assembly code.

Yet another benefit of this approach to debugging optimized code is that, for

the very first time, it allows accurate blame assignment. In those cases where turning on

optimizations causes program behavior to differ, the very first question that needs to be

addressed is: did the optimizer do something wrong, or was there a bug in the original

program, or are the language semantics underspecified? Other approaches to debugging

optimized code have always started with the assumption that the optimizer is correct.

Unfortunately this assumption is not always true. By showing the effects of optimizations

in the optimized source, this approach allows the user to see what the optimizer actually

did, for those optimization whose effects are revealed in the optimized source. Thus the

programmer can look at the optimized source and decide if the optimizer did indeed do

something incorrect, or if the bug was in the original program, or if the program is, in fact,

correct according to the language definition.

The final advantage of this is approach is, as we have demonstrated, that it can

be retrofitted to existing compilers and debuggers.

6.4.2 Contributions of this work

By taking a non-transparent approach to debugging optimized code, we allow users

to see which variables get updated and what actual values these variable receive. This in

turn means there are no out-of-order variable updates. Thus the entire currency problem

has been eliminated.

This approach also introduces the concept of key instructions, and explains their

many uses not only for generating optimized source, but also for providing simple solutions

to the code location mapping problem and for collecting the variable range table information,

independent of the transparency of the solution being implemented.

We have pioneered a scheme for eviction recovery within the debugger. Previous

research stopped at discovering evicted variables, proposing only to tell users that the

desired values were unavailable.

We have implemented a simple graphical user interface and have shown how such
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a device can drastically reduce the burden on the user of understanding the optimized

source. The user feedback we received confirmed that using the GUI allowed them to use

and understand the optimized source; without it they would have been lost.

Overall we have demonstrated the practicality of revealing optimization effects to

users for debugging optimized code. We have provided a general theoretical framework for

our solutions, of which Optview is one implementation.
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Appendix A

User Feedback Data

Below are the complete texts of the user feedback we received on our debugger

tool. The lines mark divisions between feedback from different users.

1. It was very confusing to me in the beginning, to figure out where
and what the optimized code was. I had some trouble mapping the
optimized code to the original code I wrote, because it looked so
different. But that’s because your highlighting wasn’t working, and
I think it would have helped a lot.

2. I think the split screen approach works, because it gives a
reference point of the original code. However, I wonder if the
person using the debugger was not the author of the code, then
maybe it would be actually easier because he/she won’t be
constantly trying to map from optimized to original code.

3. The introduction of new variable names which meant nothing threw me
off a bit. I didn’t know what cse_var_x corresponds to. Maybe
assigning names that are similar to the original variables can help
a bit.

4. Although confusing a first, I still found my bug. So I think after
a few tries, people can use this debugger to looked at optimized
code, instead of "make clean; make unoptimized" to debugged, and
then after the bugs are found, "make optimized" again. This is what
I usually do, because I cannot step through the original code when
the executable is actually optimized.

__________________________________________________________________________
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Overall I really like it and think that it can be very useful for
development, however it may take major effort to make it from a
prototype to a real product.

Features I like:
1) highlighting of optimized code and its corresponding source
2) no problem printing out values of variables and parameters in

the optimized source
3) low-level dbx debugging features continue to be supported
4) generated names reflect what kind of optimizations has been done

Things that are of concern and may improve on:
1) optimizations supported can be extended to more sophisticated ones,

like loop-nest or even mp-related
2) users need to understand the optimizations performed to get a clear

picture of what’s going on and how to debug
3) extending the language support to C++ will be more useful for the

compiler group people

__________________________________________________________________________

Overall, I think it is a reasonable tool to debug optimized
code. The interface was pleasant, it was VERY useful to have both
sources visible with the debugger pointing out the line it is
executing in BOTH sources.

There are, however, some issues with the examination of data. It
would be nice to be able to dereference cse_ variables. Some variables
are apparently tossed out in the optimized code, it would be useful if
we could tell which ones. Some of the assignments to cse_ variables
were not in the optimized source, which made the execution a bit
puzzling. It also seemed difficult to disable breakpoints.

But the breakpoint system worked well, even when including
conditions on breakpoints.

__________________________________________________________________________

(In somewhat random order). I think seeing the correspondence
between the optimized and unoptimized code is very useful for
debugging under conditions where it is an issue.
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However, (on the list of things which would be nice but aren’t
implemented) I think the mechanisms by which the compiler distorts the
code are necessary to understand what is going on. I spent a fair
amount of my time with the system trying to understand what the
mechanism and rational for the various transformations was. I know
that some of it was labeled through the comments, but a production
system should document "why" and "how" of the optimization, not just
"what".

Your debugger does the hard part (isolating the "what"), with
the why and how being more a matter of interactive documentation and
annotations. Similarly, some notion of position or completeness when
a single statement occupies multiple steps is desirable.

In all, it seems like a rough prototype of a very useful tool,
akin in some ways to Purify, a powerful tool used somewhat as a last
resort, when nothing else can do the job.

__________________________________________________________________________

I found that Python (is that its name?) was a very reasonable approach
to trying to debug problems that surface only in optimized code. I
think that a more aggressive effort on the user-interface aspect of
the program could increase its user-friendliness greatly. As it
stands, it is not a viable substitute for standard debugging; but with
the enhancements below, I think it could be made to be as usable as a
standard debugger.

The main difficulty I encountered was matching up the semantic
position of the optimized and unoptimized sources. It would have been
much easier if the relationships between the optimized source
variables and unoptimized source variables were made explicit. For
example, if the variable names were color-coded to reflect their
relationships, then a matching could have been easier. Also, naming
the variables introduced in the optimization process could have made
the link easier; for example, instead of cse_var_77, a name like
offset_index_77 would make it clear that a certain variable is being
used to calculate an array offset.

Another difficulty I found was in accessing variable values by name;
in the optimized source-building process, it seems that some variable
names are lost, making access to them during debugging impossible.
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This seems to be a critical flaw, but hopefully one which can be fixed
easily.

One suggestion which may or may not be possible to implement is the
following: it would be very helpful if the optimizations could be
explained, with the use of tool-tip texts, for example. For instance,
if I move my mouse over a statement which has been repositioned, it
would be nice for a small blurb to come up and explain briefly why it
was moved. Even if a full explanation cannot be given, it would be
nice for it to acknowledge the repositioning, so the user knows that
it is not an error. Presumably, since the compiler has a finite
number of transforms, this is (in principle) possible.

__________________________________________________________________________

It seems like a really neat tool, which allows you not only to see the
source correspondence between statements in the optimized code and the
corresponding statements in the original code, but also to debug and
make references to compiler-generated temporaries and set breakpoints
at lines in the optimized version of the code. It is also worth
noting the neat feature indicating uninitialized values when doing a
"print" command before the first def of a variable.

This provides a much finer grain of debugging than if all debugger
commands only could be issued with respect to line-numbers and
variables as they occur in the original source. Debugging from the
perspective of the transformed source is definitely the right way to
go.

This tool provides a debugger (for transformed source), a view of of
transformed source in a high-level language (same as input language),
and a mapping from statements in the transformed source to statements
in the original source. These utilities could be immensely useful for
many purposes, among which the following comes to mind:

1) To look at values held in compiler-generated temporaries, and
general debugging with respect to the transformed code.

2) To investigate transformations the compiler has done (similar to
the way we use whirl2c/whirl2f now) to tune for optimal
performance. This tool currently operates at a lower level than
whirl2c/whirl2f (which does not work well after wopt), and can
be used to tune for low-level optimizations.
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3) Similar to 2, but as an aid to compiler writers to find bugs and
places where transformations could have been done better (beats
looking at assembler or compiler-intermediate code).

Overall the current version of the tool demonstrates well how the
ideas implemented provides a very useful and powerful mechanism for
debugging optimized programs. It worked well for almost all compiler
commands I tried, and the transformed source, variable values, and the
mapping to original source were correct most of the time. As proof of
concept, this is excellent. As a productivity tool, it needs to be
made more robust:

- After doing a "next" from a "def", I sometimes had to do a "step"
to see the right value in compiler generated temps.

- Sometimes compiler-generated temps "lose" the value before going
out of scope (should have PU scope?).

- It would be useful to see the live-range and type of
compiler-generated temps, either by declarations in the
transformed source, or by other means. The type can be seen by
doing "whatis tmp-name", but is not currently an accurate type.

- The user-interface was a little shaky, and died a little too
often when certain dbx commands where issued.

These are all really small problems that could be relatively easily
fixed, and they did not diminish the overall impression of the tool as
a very user-friendly debugger of optimized code, which is way beyond
anything else I have seen w.r.t. debugging optimized code.

__________________________________________________________________________

Feedback concerning Tool for Debugging Optimized Code

How useful is it? I split the user community for this tool into two
categories: compiler developers/testers and compiler end-users. I
believe this tool would have differing levels of usefulness across
these two user communities.

For compiler developers and compiler testers, this tool would be
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pervasively useful primarily in tracking down bugs created or
uncovered by compiler optimization. It is sometimes the case that an
optimizing compiler will perform an optimization incorrectly such that
an application will then produce incorrect results. These types of
bugs can be very difficult to track down with ordinary debuggers. As
a compiler tester I can think of number of occasions where I would
have been able to solve a problem many times faster using a tool like
this rather than a standard debugger. I prefer the methodology used
in this tool, to those found in other optimized debuggers in that I’d
much rather look at the optimized source code to find the problem
rather than having a problem masked by only being able to look at the
original code.

For end-users, this tools would be less generally useful because many
user communities compile with no optimization during development and
only use compiler optimization near the end of product development.
They do this for two reasons, their product builds faster with no
optimization, and is easier to debug. While this tool would make it
easier to debug optimized code, I don’t believe that the tool by
itself is compelling enough to get users to only do optimized builds
throughout the development cycle. So that leaves many end-users using
this tool only at the end of the development cycle. I would also say
that since it is difficult for most software developers to read
optimized code, that whenever possible they would prefer to use a
standard debugger to debug unoptimized code. However in situations
where they had to debug optimized code, they would find this tool
useful. It should be noted that my projection of the lack of general
usefulness of this tool in the broader user community is based more on
the lack of use of compiler optimization throughout the development
cycle rather than any conceptual or implementation problems with
Caroline’s debugger.

__________________________________________________________________________

So, in a gist, it’s not quite ready-for-prime-time.

1. dbx is lame. It’d be cool to force SGI to use gdb.

2. I’d like an emacs interface, so I can be in my environment
where I’m most comfortable coding. Plus, you get syntax
highlighting for free.

3. I don’t quite understand the cse_var variables. I have a lack of
confidence that I know which variables they came from. Perhaps
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renaming them to something more like the original source
variable. Perhaps a tooltip-like approach where you pop up a little
display of what the variable belongs to when the user lingers their
mouse on top of it.

4. You have to perform the copy propagation and removal of cse_vars
whenever possible. It’ll make things MUCH easier to understand in
the optimized source.

5. Macro substitution is a double substitution. The optimized source
only shows the final target. It’d be nice if the comments in the
opt source could indicate which Macro this expression came from and
what its non-optimized representation looked like.

6. You have to work on getting the correspondence between the two
sources working better. Perhaps making your parser understand //
C++ comments and if statements where the consequent is on the same
line as the predicate.

7. If you don’t switch the environment to emacs, here’s a list of UI
desires:

a. syntax highlighting
b. movable pane between the opt source and regular source.
c. vertical layout of windows instead of horizontal.
d. multiple windows, one for opt source, one for reg source so I

can position them where I want.
e. ability to make the dbx window bigger.
f. Can you click on a line number to make a breakpoint? I couldn’t

tell.
g. Add a menu for common file commands and the more obscure

debugging commands.

8. Parser should be faster when switching source files. It’s dog slow
now. Trying recoding it in C?

I think you’re on an exponential for understanding. If you were to
make a few of these changes (3, 4 and 6 especially) it would make a
world of difference.

__________________________________________________________________________
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Generally I was pleased with the design of the optimized code
debugger. It appears that one can reliably display the values of
variables in optimized code, both variables in the original source and
in the optimized source. I think the idea of showing optimized source
is an excellent one. Besides not being able to display variables,
running the ordinary debugger on optimized code is usually very
confusing since the line numbers jump all over the place. Seeing line
numbers change in an orderly fashion is quite soothing, and the
optimized source is interesting in itself to show what the optimizer
is doing.

I would be interested in seeing this extended to C++ code.

I encountered a few bugs while experimenting with the optimized code
debugger.

My program called a function "fill" to initialize an array of 100
integers and then a function "sum" to add them up. If I set a
breakpoint at fill, run to the breakpoint and return, I cannot at that
point display the elements of the array, although I can display them
correctly at the entry to sum.

I could not always correctly display the induction variables, which
spend most of their life in registers. I seemed to be getting stale
values, since they were never updated.

Single-stepping through the sum function, occasionally I would not get
the correct value for the partial result.

Attempting to do set $hexints=1 caused the debugger to crash. This is
somewhat annoying, since I prefer to display addresses in hex.

Deleting breakpoints also crashed the debugger.

__________________________________________________________________________

I used the debugger for a while. My comments:

a) it’s not production quality (fixing those problems would be
straightforward, I estimate). During initial use it hung up a
couple times. With help I learned how to avoid the problems.
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b) It is usable and useful, as is.

c) I found the parallel source windows (original and
optimizer-output-source) very useful. It was fascinating to see
the things the optimizer chose to do represented in source. While
I have occasionally traced through assembly code trying to
understand why something failed after being optimized, I never
pieced together a coherent view over more than a very narrow region
(doing things by hand). The consistent transformation of while(){}
and for(){} into do{}while() because the first iteration was
usually known to pass the test (from dataflow-analysis) was both
interesting and reassuring (as to code quality).

d) Another benefit of the optimized source was that macros were shown
after expansion. This was particularly helpful in understanding
what was going on in a complicated piece of code I did not know
much about. Both with simple constants and with things that looked
like ordinary function calls really being something complicated
that called some function with a completely different name.

If only I’d had it available a few months ago, when a library bug got
assigned to me and it was really an optimizer problem! There is good
reason to think a tool like this would have helped.

__________________________________________________________________________

The concept of showing the optimized code for debugging purposes is a
good one. Ideally, it would show developers exactly how their code was
being executed. However, the optimized code can be hard to
read. Showing how the optimized code is related to the developer’s
code is crucial for understanding.

The implementation is a good start. Highlighting a line in the
original and the corresponding in the optimized code is a good
idea. However, the names of the compiler-generated variables are hard
to understand. It may be good to make the names be similar to those of
the original variables that they replace, whenever possible. Of
course, the parser bugs make it hard to understand as well, but those
will go away as the parser is debugged. A window for watching
variables would also be nice, and would reinforce how compiler
variables are related to the original variables.
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Programmers who are not aware of optimization techniques may be
confused by the debugger, but experienced programmers who understand
these techniques should not have a problem. The debugger could also
be used for teaching purposes, concretely showing students what
optimization techniques really do, without needing to go down to
assembly code.

__________________________________________________________________________

First, my impression is that a language-level representation of
optimized code is a powerful tool. An optimizing compiler usually
presents itself as black box: I say "-O2", and the compiler does
something that’s described vaguely (at best) in a manual page. But I
get no information about the transformations that it performed. All I
can do is run the executable (or maybe profile it) to see how its
performance and output change.

There are two real benefits of your tool that I can easily see.
First, if my program has a bug that shows itself only when I compile
with optimization, by far the most direct way for me to uncover the
source of that bug is to work with a program representation that
reflects the transformations performed by the optimizer. Second, if
I’m doing performance tuning, I again want to know what the optimizer
has done. Assuming that I’ve got some understanding of the processor
resources that are available (e.g., number of registers), I might be
able to evaluate how well those resources are being used.

I found the ability to compare the original (unoptimized) code and the
optimized code to be invaluable. Compared to the optimized code, the
original code was much easier to navigate (especially since I wasn’t
familiar with it). I certainly appreciated the opportunity to avoid
the complexity induced by optimization when I was looking at
initialization code and similar, "less interesting" program parts.
The use of highlighting to show correspondence between statements in
the two version strikes me as essential, making the optimized code
much easier to understand. The two representations aren’t quite
equals, in that breakpoints an only be set on the optimized code, and
changing that would be useful.

As I mentioned, adding program slicing to aid in the understanding of
the common-subexpression variables would be a useful feature. With a
little practice, though, I wonder if I couldn’t learn to use the
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corresponding-statements highlighting to get the same information.

Finally, the optimizer’s loop conversions can be pretty confusing.
Absolutely everything becomes a do-while loop, and that made it
difficult for me to see which loop construct in the original code
produced a given loop in the optimized code. Some kind of
loop-construct correspondence highlighting (akin to the single
statement correspondence highlighting) would help with this.

All in all, I think this is interesting stuff, and quite well done.
It certainly seems useful for debugging, performance tuning, and any
situation in which the programmer wants to understand the optimizer’s
behavior.

__________________________________________________________________________

The following are some comments/feedback on the compiler and debugger
(OPTVIEW) that you developed based on my 25-minute experience playing
with it on June 4 (Friday morning):

The strengths of the tool (OPTVIEW):

1. By having the original code and the optimized code side by side,
the users are able to understand the effects of compiler
optimizations better. When the users select a line from the
original code, the tool highlights the new optimized code. This
mapping makes it very easy for users to follow the optimized code
by working with the original code that they wrote. This strong
"binding" between the original code that the users are "familiar"
with and the optimized code that are "new" to users is very
important factor in the human interface design.

2. The code that has been optimized by a compiler is often transformed
in various ways: e.g. some of the original variables are not used,
new variables are generated, rearranging of codes/instructions etc.
Since the debugger is linked to the optimized code, the users are
able to understand the transformed codes better, and access
variables generated in the new optimized code that would otherwise
be "obscure" to the users.

3. The human interface is fairly straightforward and easy to
understand. So the learning curve is minimum.

4. It provides a good high-level view of source optimization.
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Possible improvements:

1. Personally, I am used to the window based debugger tool (xdbx)
where there are a fancy panel of buttons to click on to do the
various tasks such as: printing variable values, creating check
points etc. Incorporating these features in the tool will be
great.

2. There are several bugs that can be corrected and improved on:
(Carolyn, you have already identified these)
- debugger that works correctly without being confused about which

variable to print out.
- dbx problem, once the program terminates, can’t create checkpoints

and run it again.

__________________________________________________________________________

My overall comment is that the debugger looks basically usable. The
most important thing to me, at first glance, was to be able to find
the correspondence between the original code and the optimized code.
At a superficial level, I felt I was able to do that. The preservation
of comments, procedure names and levels of indentation helped with
that. The code looked similar, and if one has some idea of how an
optimizer works, then the optimized code is not completely mysterious.

When you saw me setting breakpoints, it was because I was trying to
see if I could set breakpoints at particular points in a branch and
look at variables at that point. I think that while I was trying to
set one of these breakpoints, your debugger said that the line I
wanted to break on was somehow ambiguous. If I were using the
debugger, I would want that ambiguity cleared up for me either through
and explanation or a suggestion of what to do.

I’m not sure I can evaluate your debugger in any depth. There were a
couple things that I lacked going into this evaluation. The first is
that I don’t in a deep sense know what an optimizer does, or why I
would want to debug optimized code. In the past I have run into bugs
that caused my code to crash when it was optimized though it ran fine
when unoptimized. I assume that that would be one of the reasons for
using it. But in those situations, it helped to know what kinds of
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things the optimizer might be doing. I usually rely on some expert to
tell me where the code is breaking and how I could change it to make
the optimizer do something different. I’m not sure why I would
otherwise be looking at optimized code.Also, you pointed out that in
the optimized code window there were comments about the optimizer’s
actions. They meant basically nothing to me and I can only imagine
they would be very helpful for someone who understood them.

The second thing I think I sorely needed was my own code. With my own
code, I could have had a better notion if the optimized code looked
meaningful to me. Further, I would have had and actual task in mind
that I would want to try out on your debugger.

__________________________________________________________________________

Evaluation of Optview debugger

I ran the debugger on one of my own programs (a C/OpenGL-based mesh
generator), as well as on a simpler example which implements qsort.

Comments at the Conceptual Level: I feel like there is definitely a
need for a debugger for optimized code, and while I have not
experienced alternative approaches, I felt the optimized source code
paradigm worked well for me. It provided an intuitive translation from
my original source code to the optimized code shown in the opposite
view. It was pretty straight forward to map code fragments in one
section to another, both by observing which entities were highlighted,
and by actually stepping through and watching the flow. This mapping
was facilitated by the annotations inserted as comments by the
debugger.

Functionality: By stepping through the code and looked at the
resulting source code for several breakpoints, I was able to get a
feel for using the debugger. As I did not actually have a problem
that I was tracking down, I was not able to completely test the
functionality, but I found nothing in principle that would prevent it
from being very useful for debugging.

For my more complicated program, the code translation was incorrect in
some cases. This was in some part due to coding style (e.g. my code
violated the ‘one statement per line’ rule), and in part to apparent



129

bugs in the optimized source generation. Assuming that the incorrect
source code mapping was just an artifact of a prototype system, and
not a problem inherent in the approach, I would find such a system
very useful.

Suggestions for extensions:
I personally often use the ‘assign’ functionality of dbx while I am
debugging, so I think it would be useful to include this feature in
the debugger for optimized code.

Source code is only generated from a subset of the optimizations. I
agree that it probably would be too difficult to provide a clear
mapping from the original source to the completely optimized version,
without going all the way down to the assembly level instructions. But
I feel it might end up being misleading because you are still not
really seeing the resulting code that is being executed. I don’t know
if it is feasible to implement, but a multi-level approach might help
when one is faced with a truly nasty bug. The first level is the
source, the second the optimized source, and then varying number of
levels below that that implement the other optimizations - all the way
down to the assembly level. These levels would be hidden unless
explicitly expanded by the user. I think this was mentioned already as
a future direction for this work.
__________________________________________________________________________

Evaluation of Caroline Tice’s Optimized Code Debugger
-----------------------------------------------------

I volunteered to try out and evaluate the Optimized Code Debugger tool
designed and developed by Caroline Tice. I spend almost four hours
trying out the tool on five different C programs - some small, some
large. I spend an additional hour with Caroline asking questions
about the tool, her approach to the problem and her strategies for
dealing with other issues.

The Concept
-----------

After discussions with Caroline, working with the tool and thinking
about the issues, I believe that her concept of how to approach the
problem of debugging optimized code has great merit. I have used
other systems which tried to support such debugging but all fell short
of the mark by a long way for various reasons.
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Caroline’s strategy fully supports several areas which I feel are
absolutely critical:

1. Debug ‘‘real’’ optimized code. Other approaches which either
instrument the optimized code or turn off some of the
optimizations defeat the major reason for debugging optimized
code - you want to save on the development time by only have to
test & debug the final production code. Caroline’s tool is
directly debugging the fully optimized code with nothing addition
added to the code path. It would be the final production code
which ships. The support for her optimized code debugging is in
instrumentation she added within the compiler, in the extended
object symbol table, in the rewritten dwarf line number table and
in the debugger tool itself.

2. The ‘‘environment’’ of debugging needs to be as familiar and
comfortable to the user as debugging unoptimized code. If at all
possible the tool needs to be the same one the user already uses
without requiring the use of new commands and procedures.
Caroline uses the standard tool - dbx - with a graphical
front-end for synchronizing the source view with the debugging
session.

3. The view of the source code during debugging need to be as close
to the original code the user wrote as possible. Most other
optimized code debuggers fail here because they reconstitute a
source representation of the program which looks nothing like the
user’s original code (white space, comments, variable naming,
etc). This is what I feel is the key contribution of Caroline’s
work. Her approach is to instrument the compiler to track
transformations (optimizations) which have a reasonable source
representation and then to apply those transformations
independently to the original, textual source code. This
completely preserves the ‘‘look and feel’’ of the original
source. While not exactly the code the code the user wrote, they
have all of their familiar ‘‘landmarks’’ in the code so they can
immediately recognize and feel comfortable with it. Caroline
purposefully does not try to represent every optimization (local
scheduling for example) but those which affect the structural
arrangement of statements.

4. The approach used must scale well to large applications. I’ve
used other optimized code debuggers which work well for small
programs but fail with anything real. Caroline’s approach does
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nothing extra to support debugging large programs but doesn’t do
anything to restrict it either. However well dbx does with large
programs, this optimized code debugger will do. I see nothing in
her approach that won’t scale.

5. It must be simple to generate the debuggable, optimized program.
Caroline’s tool only requires that you use her instrumented
compiler and assert the standard ’-g3’ option in addition to
’-O2’. You also invoke the debugger with a different name.
Other than that, nothing else is required.

Caroline’s prototype tool only supports the C language and I explored
with her what her strategy would be for other languages. In
particular, Fortran 90 and C++ have language constructs which get
broken down in compilation and distorted by optimizations in such a
way that the final result can’t be represented by legal source code in
the original language. Her plan in this area would be to represent
the transformed source in a pseudo-source form where needed. Since
her whole scheme does not ever try to compile the transformed source,
this will work technically. A question would be how understandable an
applications programmer would find the pseudo-code. But I think that
this is a reasonable approach to the problem.

The Users and the Tool
----------------------

I gave some thought to who the user of such a tool would be and what
would their expectations and experiences would be with debugging
optimized code. [personal data omitted]

For the most part, I don’t think that the potential user of this tool
will be a compiler developer. Aside from coding mistakes, most
problems in compilers are algorithmic based and are usually
‘‘debugged’’ with other tools and traces. There is a need to
‘‘debug’’ mis-compiled application program but the problems here are
often at a finer granularity of optimization (source transformation)
than this tool can show (by design).

I think that the real user body for this tool are application program
developers. Here the ability to ‘‘painlessly’’ debug the final, fully
optimized application could save a lot of time (by eliminating one
full test/debug cycle). Assuming that one isn’t dealing with a
compiler-induced bug, the developer only needs to be concerned with
the level of source transformations that this tool does support.
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Again, I feel that any developer would feel ‘‘right at home’’ with the
transformed source code presented during debugging.

The debugger front-end that Caroline has prototyped presents three
panels to the user. The original source code, the transformed source
code and the debugger session. As debugging proceeds, highlighting in
both source windows tracks the execution. I found the feature of
clicking on an original source statement to see what it was
transformed into (and the opposite - querying where a transformed line
came from) invaluable to navigating the program being debugged.
Again, I’m used to and comfortable seeing optimization
transformations. However; I feel that even someone who doesn’t know
what forward constant propagation or common sub-expression elimination
is can easily follow, understand and feel comfortable with debugging
their program.

My Use of the Tool
------------------

I spent most of my evaluation time exercising the tool itself. In
general I was very impressed but hit little problems in almost
everything I tried. Caroline has put a lot of thought, time and
effort into this project and it shows but the prototype tool is just
that - a prototype.

The feature I found most useful, was the dual-window presentation of
original source and transformed source. Without it, I think a user
would be lost. I liked the ability to click on a source line and
(usually) see what line(s) it was transformed into. One suggestion
for improvement is to vertically center the selected text and to try
and keep the two representations (horizontally) in sync with each
other. At times I found the comments classifying the optimization
performed on the transformed source distracting. An option to turn
them off would be helpful. The ability to resize the overall window
and sub-windows is also needed.

Occasionally I had the problem that Caroline warned me about where the
debugger would fail to come up. Trying the command again would work.
In addition to the warning about multiple statements on a line not
being supported (an implementation detail, not a problem with the
concept or approach) I sometimes had problems with a single statement
spanning multiple lines confusing the line tracker.

In general, the dbx dialogue window worked well but was often
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sluggish. A few times the tool, dbx or the application itself hung up
and I had to abort the whole thing to regain control.

The instrumentation added within the compiler to track transformations
did a good job with assigning names to compiler-generated temporaries
and adding those names to the dwarf symbol table (allowing me to
’print’ their value). It would be more useful if the generated name
could be derived from a user given variable name when possible. For
CSE’d expressions, this wouldn’t work but when a temporary variable is
assigned a simple variable, it’s address or variable +/- constant
(relatively common ‘‘optimizations’’) it could be given a name derived
form the variable involved.

Most of the code I tried operated correctly so I just explored running
it in the debugger, setting breakpoints (sometimes clicking on a
transformed statement - one of many generated from a single statement-
I’d get multiple breakpoints unexpectedly), printing variables, etc.
For the most part this all worked ok and I had no problem navigating
the optimized source code.

At one point I modified a source field, recompiled, re-entered the
debugger and was presented with the new (original) source code and the
old transformed source code. Somehow the new transformed code didn’t
appear. Deleting all generated files and recompiling cleared up the
problem. The tool definitely needs to check date/time stamps on files
and at least warn about out-of-date files.

I purposely introduced an error into one application (the weblint
tool) and then did a real debugging session to find the bug. I was
able to do it as easily (modulo a few tool hiccups) with the optimized
code as I could have with the unoptimized code.

The tool isn’t ready for ‘‘prime time’’ but it met the objective of
allowing me to debug fully optimized programs as easily as I could the
unoptimized versions.

Summary
-------

I think that Caroline has done a great job with this project. She has
pioneered a new approach to debugging optimized code (mimicked source
transformation) which meets all the important criteria and is truly
useful. It doesn’t suffer the inherent problems of previous
approaches. I also think it is an approach which could be adapted to
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any compiler since most of it is done externally and at the source
level - the intrusion in the compiler is rather small and isolated.
Caroline’s ideas for solving the ‘‘optimization transformation can’t
be represented in source’’ problem of higher-level languages is sound
and will probably work.

I think that the only weak part of the project is the implementation
of the prototype tool itself. It is an excellent ‘‘proof of concept’’
which works well enough to explore the concept and see it’s viability.
However; I found that it wasn’t robust in several areas. There are
also a few usability issues which could be done better. I don’t
believe there are any major flaws in concept or design, but clean up
and polish are needed.

Overall an excellent project and one which (successfully) advances the
ability of debug optimized code.
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Appendix B

SPECint95 Data for SGI Mips Pro

7.2 C Compiler

The following information was obtained directly from the official SPEC web site:

http://www.spec.org/osg/cpu95/results/res98q3/cpu95-980701-02839.asc

SPEC Benchmark CINT95 Summary

Base Base Base Peak Peak Peak
Benchmarks Ref Time Run Time Ratio Ref Time Run Time Ratio
------------ -------- -------- -------- -------- -------- --------
099.go 4600 359 12.8 4600 331 13.9
124.m88ksim 1900 168 11.3 1900 131 14.5
126.gcc 1700 165 10.3 1700 159 10.7
129.compress 1800 149 12.1 1800 151 12.0
130.li 1900 161 11.8 1900 160 11.9
132.ijpeg 2400 215 11.2 2400 208 11.5
134.perl 1900 121 15.7 1900 121 15.7
147.vortex 2700 276 9.80 2700 277 9.74
SPECint_base95 (Geom. Mean) 11.8
SPECint95 (Geom. Mean) 12.4

TESTER INFORMATION
------------------

SPEC License #: 04
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Tested By: SGI
Test Date: Jun-98

Hardware Avail: Jun-98
Software Avail: Jun-98

HARDWARE
--------

Model Name: O2: 250MHz R10k
CPU: 250MHz MIPS R10000 Processor Chip Revision: 3.4
FPU: MIPS R10010 Floating Point Chip Revision: 0.0

Number of CPU(s): 1
Primary Cache: 32KBI + 32KBD on chip

Secondary Cache: 1MB (I+D)
Other Cache: None

Memory: 128MB
Disk Subsystem: 1 SCSI 4.3GB
Other Hardware: none

SOFTWARE
--------

Operating System: IRIX 6.5
Compiler: MIPSpro C Compiler 7.2.1

IRIX patches 2641 2909 2991 2992 3022 3048
IRIX patches 3065 3077 3131 3139 3140

File System: XFS
System State: Single-User

NOTES
-------

Portability Flags: all: -DUSG gcc: -Dalloca=__builtin_alloca
FEEDBACK:
. PASS1 = -fb_create /tmp/FBDIR/$(EXENAME)
. PASS2 = -fb_opt /tmp/FBDIR/$(EXENAME)
Base Flags: -Ofast=ip32_10k -IPA:use_intrinsic, FEEDBACK
Peak Flags:
go: -O2 -n32 -mips4 -IPA:plimit=1000:small_pu=60:use_intrinsic \
. -TARG:platform=ip32_10k -OPT:Olimit=0 -OPT:goto=off, FEEDBACK
m88ksim: -O2 -n32 -mips4 -TARG:platform=ip32_10k \

-IPA:plimit=4000:space=100:small_pu=90:use_intrinsic \
. -OPT:Olimit=0:fast_bit_intrinsics=on:ro=3:goto=off, FEEDBACK
gcc: -Ofast=ip32_10k \
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-IPA:use_intrinsic:callee_limit=1500:plimit=750:space=120:clone=on\
-OPT:fast_bit_intrinsics=on \

. -LNO:fission=1:pwr2=off:prefetch=0 -OPT:ieee_arith=3, FEEDBACK
compress: -Ofast=ip32_10k -IPA:use_intrinsic, FEEDBACK
li: -Ofast=ip32_10k \

-IPA:use_intrinsic:min_hot=12:callee_limit=750:plimit=12000 \
. -IPA:space=200:clone=on:aggr_cprop=on -OPT:goto=off, FEEDBACK
ijpeg: -Ofast=ip32_10k -LNO:fission=0:interchange=off:pf2=0:ou_max=2 \

-OPT:unroll_analysis=off:unroll_size=480:ieee_arith=3 \
-IPA:use_intrinsic:callee_limit=950:plimit=730:space=130:clone=on\

. -OPT:goto=off, FEEDBACK
perl: -Ofast=ip32_10k -IPA:use_intrinsic, FEEDBACK
vortex: -Ofast=ip32_10k -IPA:use_intrinsic, FEEDBACK
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